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PREFACE

Today there is a growing recognition of computer science as a laboratory science.
In addition to the mathematical theory that supports techniques in subareas
such as artificial intelligence, the student needs to work with actual programs

- and problems to get a feel for the technology. This book grew out of the percep-

tion that hands-on experimentation coordinated with textbook explanations of
principles and of actual programs can provide an ideal learning combination for
students of artificial intelligence.

The purpose of this book is to provide an up-to-date and didactically coherent
introduction to the principles and programming methods of artificial intelligence.
It is appropriate for an undergraduate or first-year graduate course. While it is
possible for the student to get acquainted with artificial intelligence in a single
quarter or semester, a sequence of two to three quarters or semesters is prefer-
able. The author covers most of the material in two academic quarters at the
University of Washington. During the first quarter, Chapters 1 through 6 or 7 are
tackled, laying a foundation of symbol manipulation, knowledge representation
and inference. The second quarter takes on the more advanced topics: learning,
natural language understanding, vision and the integration of Al technology into
expert systems.

If programming is to be given a heavy emphasis, the material can be spread
over more than two quarters; more of the problems may be assigned, and the
instructor may wish to spend some time discussing various aspects of the assign-
ments. In the final term of a two- or three-course sequence, a term project by
each student, which can grow out of one of the programs provided in the text,
can be very successful.

Unlike other Al texts, The Elements of Artificial Intelligence integrates the
presentation of principles with actual runnable LISP illustrations. I have at-
tempted to implement a large enough fraction of these ideas in fully-presented
LISP programs to allow the student to gain enough intuition through experiment
to support his/her understanding of all the principles covered.

While the LISP examples encourage an experimental study of the subject,
theory is not avoided. The student needs to gain an appreciation for the interplay
between theory and practice. Logical reasoning plays a key role in much of Al
today, and other formalisms such as various probabilistic reasoning methods are
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alde i portant. Various mathematical ideas come up in practically all areas of
Al and a study of AI can serve as an invitation to the student to investigate
sojne of these formalisms further.

The prerequisites for a course based on this book are: (a) an intuitive under-
standimg of how a computer works; this is normally the result of programming
experience, (b) an exposure to mathematical logic, at least at the level of the
prpp ositional calculus, and preferably some experience with the predicate calcu-
luf, (<) high-school algebra, and (d) some familiarity with data structures such
ad strings, trees, arrays and graphs. Some of the techniques and examples in
this book may require an understanding of essential aspects of other subjects:
all understanding of what it means to take a derivative of a function (something
ndrmally taught in freshman calculus) is needed to appreciate the LEIBNIZ pro-
gbm in Chapter 3; some exposure to mathematical logic would facilitate an
ujderstanding of Chapter 6; an exposure to elementary concepts of probability
islre commended for students embarking on Chapter 7; and Chapter 10 makes
odcasional use of several kinds of mathematics, including the integral calculus
ajd computational geometry. However, most of the examples do not require
mpre than common knowledge (e.g., the rules of chess) to understand.

The Elements of Artificial Intelligence is designed to be a self-contained text.
Hbwever, if a separate, deeper treatment of LISP is desired, there are several
bboks on LISP that could be used in a supplementary fashion. One of these is
IfSP by Winston and Horn; another is by D. Touretsky, and a book particu-
l4ly suited to students using the Franz Lisp implementation was written by R.
Wilensky.

The use of programs to illustrate elements of artificial intelligence seems
efsential if students are to get a practical view of the field. Courses in Al today
c4n more and more easily have access to sufficient computational facilities, and in
the opinion of the author, it is inadvisable to neglect the experience of interaction
ith computers in introducing Al

At the same time, a course on artificial intelligence should be an enjoyable
he. A primary source of students’ pleasure is the chance to write, play with,
hd modify programs that seem to be clever, and to undetstand what makes
lem work or not work. To this end, many of the exercises in the book consist
[ experimentation with or modification of the programs presented in the text,
I explaining aspects of their behavior.

‘Various implementations of LISP may be used to run the examples, including
bveral excellent microcomputer LISP’s. One implementation has been devel-
ped by the author specifically to support the examples used in this text; it is
he intention of the author and publisher to make this software available at a
bst 1nuch less than what commercial systems typically cost.

The chapters are intended to be treated in the order given. However, the
ifstructor may choose to omit or supplement material to his or her own taste,
# artificial intelligence is a subject of broad scope.

Chapter 1 provides a general introduction addressing the popular question of

oo O b=}
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what intelligence is and the question of how Al is related to other fields. Chap-
ter 2 is a brief but self-contained introduction to interactive programming with
the LISP language. This chapter can be skipped by students already familiar
with the language. Programming tools and methodology are further developed
in Chapter 3. There, a pattern-matching function, MATCH, is described that
facilitates several subsequent programs. The chapter illustrates the application
of LISP to simple Al problems: carrying on a dialog, and manipulating mathe-
matical formulas according to rules of the differential calculus. The emphasis is
on programming techniques.

In Chapter 4 (Knowledge Representation), we begin to explore possibilities
for structuring simple factual knowledge to support subsequent inference, using
concrete LISP data structures. The example program LINNEUS, described at
length, builds upon the MATCH function of the previous chapter to illustrate
both the representation of knowledge in an ISA hierarchy, and elementary in-
ference based on that knowledge. The program includes a simple conversational
interface. Several issues are raised here which are discussed further in subsequent
chapters: search, theorem proving and natural language understanding.

The notion of search, introduced briefly in the previous chapter, is elaborated
in Chapter 5 with concepts of state space, evaluation functions, etc. The impor-
tance of pruning to fight the combinatorial explosion is explained. Alternative
algorithms for searching are presented and compared. Planning is presented as
direct application for search algorithms. The chapter closes with a discussion of
minimax search and its application in programs to play games such as checkers
and chess.

The subject of Chapter 6 is reasoning with the propositional and predicate
logics. This is taken to include the more general issue of mathematical logic as
a means for representation and inference in Al. To show how search applies to
deduction, automatic techniques are presented based on both the propositional
calculus and the predicate calculus. The “Logic-Theory Machine” is presented to
show a more “human” way to find proofs: to search using subgoals. Presenting
unification, we elaborate on the notion of pattern matching (from Chapter 3)
and introduce the PROLOG language. A “mock-PROLOG” interpreter written
in LISP is presented, and several of the chapter’s exercises require the student
to use it or modify it. The subject of non-monotonic reasoning wraps up the
chapter.

Chapter 7, in contrast to 6, deals with knowledge in which probabilities or
certainty values play a crucial role. Bayes’ rule is presented, as are some of
the epistemological considerations for applying it. We illustrate probabilistic
inference networks in the style of PROSPECTOR, and give some guidelines for
constructing them. A complete example program is presented which computes
probabilities for various hypotheses about the quality of a restaurant, given the
values of some observable variables. Finally, the Dempster-Shafer calculus is
described.

In Chapter 8 (Learning) we change our perspective. In preceding chapters the



Loncern was with using general knowledge to prove specific theorems, diagnose
barticular symptoms and solve particular puzzles and problems. Not treated was
bhe question of where the general knowledge comes from. Here the problem of
boing from specific facts to general knowledge is treated. Starting with empirical
Hata, one can derive hypotheses, rules of inference and classification rules using
Lutomatic means. A logical approach to single-concept learning is described, and
bhis leads into a presentation the version-space method. Automatic theory for-
nation is.described, and a program PYTHAGORUS is presented which explores
h space of concepts about geometry using a heuristic search algorithm.

Chapter 9 addresses the subject of natural-language understanding. Begin-
hing with design criteria for language understanding systems, the notions of
syntax, semantics and pragmatics are discussed. Augmented transition networks
and semantic grammars are presented as two powerful techniques for building
useful systems. An interactive program “Stone World” that allows the user to
communicate with a simulated character to achieve action through a subset of
hatural English demonstrates the power of these methods as well as their limi- .
tations.

Machine vision is the subject of Chapter 10. The chapter covers the under-
lying image representation problems as well as high-level vision techniques. The
complexities of interpreting scenes in the midst of ambiguities and incomplete
information require that vision call upon many other areas of artificial intel-
ligence to help solve its problems. Computer-vision research has pursued two
related but fundamentally different approaches. One of these is the development
of algorithmic or architectural models to explain how human vision works; this
approach has been labelled “computational vision” by some of its proponents.
The other approach is the inventing of techniques for performing useful tasks;
this approach includes image processing and robotic vision. While this chapter
presents ideas from both approaches, the emphasis is distinctly on the machine,
rather than the human, side of vision. This is consistent with the theme of
the book that artificial intelligence is in large part a design and programming
activity. Two LISP programs are included in Chapter 10, one for connected-
components analysis of binary images, and another for polygonal approximation
of two-dimensional shapes.

While Chapters 2 through 10 present “elements” of artificial intelligence,
Chapter 11 (Expert Systems) discusses the problem of combining the elements
into useful compounds. This chapter touches upon such issues as tools and shells
for building expert systems, special hardware, and limitations of expert systems.
A closing chapter suggests directions in which artificial intelligence may move
in the future, and it mentions some of the technical and social challenges that
artificial intelligence raises or may help solve.

S.L.T.

Seattle, Washington
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Chapter 1

Introduction

1.1 An Intellectual and Technical Challenge

The practice of designing systems that possess and acquire knowledge and reason
with that knowledge is perhaps the ultimate intellectual challenge. What could
be a more intense intellectual experience than creating an intellect? Human
intelligence is applied in every aspect of our culture. In building an intelligent
machine, one might become involved in any aspect of human culture.

Like statistics, artificial intelligence brings a collection of techniques that can
be applied in other fields such as history, biology, or engineering. Like philosophy
and mathematics, it is concerned with reasoning, but unlike either statistics
or philosophy, artificial intelligence gets deeply involved with the theories and
meanings in the subjects to which it is applied. The application of artificial
intelligence to history might easily require that a theory of the rise and fall of
nations be reworked and formalized and that new representations be designed
for describing historical events such as battles. Whereas statistics may help to
justify or refute a hypothesis, artificial intelligence may produce the hypothesis
or show an inconsistency with it. Its wide applicability and the great depth with
which it can embrace a subject make artificial intelligence unique and powerful,
and for this reason artificial intelligence may be the most interdisciplinary field
of study taught in universities.

1.1.1 They Said It Couldn’t Be Done

It is not possible for a machine to think.
Computers can only deal with zeros and ones.
Only natural things like people and animals can have intelligence. .

The prospect of intelligence in machines has produced widespread skepti-
cism. There are two main reasons for this. First, until recently, there have been
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relatively few examples of machine expertise that were in the public eye. Fur-
thermore, Al is sufficiently complicated that it is difficult for the uninitiated to
understand. Without seeing any artificial thing behave intelligently, and with-
out understanding how Al techniques work, it is hard to believe that it could be
possible.

A second reason for the skepticism has to do with people’s perception of
themselves. Most people hold their own intelligence close to their hearts. People
often feel that intelligence is what gives them their significance and their identity
in our complicated world. The possibility that a machine might possess intel-
ligence can be frightening. “If intelligence is something mechanical, then am I
nothing better than a machine?” Machines are supposed to be subservient to
humans. What is to be the status of human beings if we can no longer claim to
be the smartest of earthly beings? Many people would rather believe that ma-
chine intelligence is impossible than try to answer some of these questions.

1.1.2 Artificial Intelligence In Action

Let’s consider some systems that have been developed in research centers which
incorporate artificial intelligence.

MOLGEN is a program that assists a molecular geneticist in planning scien-
tific experiments. It was developed by M. Stefik at Stanford University in 1979.
A typical experiment for which MOLGEN successfully devised a plan was one
for the production of insulin by bacteria. Since no natural bactetia can do this,
it was necessary to provide a way to splice an insulin-production gene into the
genetic material of a bacterium. MOLGEN used a problem-solving technique
called “planning” guided by “means-ends analysis” to generate a small sequence
of general steps, and then it expanded these general steps into detailed ones, in-
troducing constraints and propagating them as it progressed. A large knowledge
base about molecular genetics is built into MOLGEN, and this was consulted
frequently by the program as the plan was refined. MOLGEN was actually able
to devise four different plans for the insulin-production experiment.

ACRONYM was developed by R. Brooks and T. Binford at the Stanford
Artificial Intelligence Laboratory around 1981. Provided with an image (such as
an aerial photograph of an airport) and geometric models for each of a set of ob-
jects (such as Boeing 747 and Lockheed L-1011 planes), ACRONYM is capable
of locating objects (in the image) for which it has models. In order to accomplish
this, it uses each model to predict invariant features of the corresponding object
that will occur in an image, it computes a description of the image in terms of
line segments and other graphical primitives, and finally, it determines an inter-
pretation of the image by putting portions of the image description into portions
of the models. Two subsystems are employed: a geometric reasoning system and
an algebraic reasoning system. ACRONYM has been successful in interpreting
airport images; it distinguished airplanes from surrounding structures such as
gate ramps and pavement markings, and it correctly identified a plane as an
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L-1011 rather than a Boeing 747.

AM is an experimental program which performs a kind of automatic theory
formation in mathematics. Given a starting knowledge base containing concepts
about elementary set theory and arithmetic, AM produced new concepts and
conjectures by using a heuristic-search algorithm to explore a concept space.
AM is guided by a mechanism that directs it to perform the task on its list of
things to do that has the highest “interestingness” value. In this way it attempts
to explore the most interesting examples and concepts, and to find the most
interesting conjectures it can. The program managed to synthesize the concept
of prime numbers and to make conjectures about them. AM was developed as
part of the doctoral research of D. Lenat, also of Stanford, in 1976.

These three systems exemplify relatively recent progress in three areas of Al:
plan-generation systems, computer vision, and machine learning. Much progress
~ has also been made in other areas of Al including logical inference and consis-
tency systems, probabilistic reasoning, speech understanding, and text under-
standing. Let us mention just a few of the many other accomplishments of Al

In the late 50’s and early 60’s, much of the research that went by the name
of artificial intelligence was concerned with getting machines to play games. An
early success was the checkers-playing program of Samuelt. It could beat most
humans at the game, and it could improve its technique through automatic
learning. Today computers play good games of chess, backgammon, and many
other games.

Al programs have demonstrated that computers can reason effectively with
uncertain information using Bayesian methods. The program MYCIN prescribes
treatment for infectious diseases, after gathering information about symptoms
in dialog with users. Another program, PROSPECTOR, analyzes geological
information obtained from field observations, and makes predictions about min-
erals that might be found at a site. Both programs employ extensive knowledge
bases built with the help of specialists (“experts”). Yet another program, called
XCON, whose development was sponsored by Digital Equipment Corporation,
automatically determines optimal configurations of VAX computers according
to customer needs and the available options.

Translation of written documents from one language to another requires deep
knowledge of both languages as well as about the subject matter under discus-
sion. Machine-aided German/English translation is now performed in a practical
way, combining the human’s deep knowledge with the computer’s speed and fa-
cility with dictionaries and syntax. Computers are also handling semantics; they
translate questions phrased in English into database queries. This eliminates
the need for users of a database to know a strange query language or to write
programs.

lsee Computers and Thought mentioned at the end of this chapter.
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1.2 What Intelligence Is

1.2.1 Aspects of Human Intelligence

“She’s intelligent.” Different people will interpret this sentence in different ways.
Some take this to mean, “she knows a lot.” Others would say this means, “she
thinks fast.” People who have thought about thinking would probably find
these interpretations somewhat lacking. Someone can be fast, yet stupid; and
yet one can know a lot of facts, but be incapable of putting things together
in a creative fashion. A somewhat more satisfactory interpretation would be,
“her actions are appropriate to each situation.” One, of course, might complain
that this statement is overly general and does not concentrate on the concept of
intelligence sufficiently.

Important aspects of human intelligence seem to be the following: the use
of intuition, common sense, judgment, creativity, goal-directedness, plausible
reasoning (“if A happens, then B might happen, and if so, then C might ..."),
knowledge and beliefs. While human intelligence is powerful and deep, there
certainly are limits to it; humans are intellectually fallible, they have limited
knowledge bases (no man or woman can read every book or have every kind of
experience), and information processing of a serial nature proceeds very slowly
in the human brain when compared with today’s computers. Thus, the meaning
of “intelligence” is not the same as “the human brain’s information-processing
ability.” However, intelligence is a quality that much of human information pro-
cessing has and which one might hope to find in other creatures or in machines.

Two of the ways that people demonstrate their intelligence are by communi-
cating effectively (through text, pictures, verbal expression, or other medium),
and by learning; that is, acquiring new knowledge through experience, and then
demonstrating that they have learned the knowledge by communicating.

1.2.2 Communication

Effective communication requires skills both in analysis of messages (reception)
and in synthesis of messages (transmission). In order to communicate something
effectively, one must be able to synthesize a message, whether that be a letter, a
paper, poem, musical composition, painting, or other form of communication, in
such a way as to express one’s meaning to one's intended recipient or audience.
Doing this well may require making judgments about the level of sophistication
of a recipient, careful use of language, and proper speed of presentation.

- On the other hand, understanding a message also requires intelligence. A
listener must know the meanings of most of the words a speaker is using, and
the listener must have some knowledge of the context for the message. It is
usually necessary for the listener to use contextual knowledge to constrain the
possible interpretations of a message. In addition, the receiving person may
need to be able to formulate pointed questions to gather any bits of lacking
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information that are necessary to understand the message. In either synthesis
or analysis of a message, skills are generally required in determining context and
in altering the representation of information.

1.2.3 Learning

The ability to learn or adapt one’s behavior to new situations is considered by
many to be a vital component of intelligence. Those animals which can change
in response to changes in their environment are considered generally to be more
clever than those unable to change their behavior. The kind of learning that
people do seems to be much more sophisticated than that which animals do;
however, it is likely that many of the basic mechanisms of learning are common
to both humans and lower animals.

What is involved in learning how to deal with a new kind of stimulus? One
must first learn what the major concerns are in the new context. For example, a
new soldier suddenly thrust into war must quickly perceive what his side’s objec-
tives are and use that information as a framework in which to insert knowledge
he gains later. Another part of learning is finding out what the basic descrip-
tive units are in a situation. For example, in learning language one must learn
that phonemes (and at the next level words and then phrases and sentences) are
structural units with which descriptions of experience can be formed. Learning
these structural units is essential in all kinds of learning experience. In learning
to see, one gradually becomes acquainted with such distinctive features as cor-
ners of man-made objects (such as buildings and furniture). Colors, textures,
and shape features are gradually acquired as tools with which to describe (con-
sciously or subconsciously) visual experience. The third part of learning is the
acquisition of the rules for combining primitive descriptors. How do words go
together? How can a description of an object be composed from shape, color,
and texture features? Both syntactic models and semantic models must be ac-
quired for each knowledge domain. Learning progresses as such models become
more and more sophisticated in order to understand the domain more deeply.

Organizing knowledge is an important component of the learning process.
Just how pieces of information are related to one another and arranged in a
machine or person’s memory is a very important issue. Facts must be accessible
when needed. Skills must come into play readily when the appropriate situation
arises. Knowledge must be structured in such a way that further learning can
take place smoothly. Part of knowledge is a framework in which various facts
and aspects of experience can be stored. The framework must make it possible
for associations to be made between old and new when the old and new are
related. The kinds of knowledge which must be stored in the framework must
include both specific facts and general rules.
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1.3 What Artificial Intelligence Is
1.3.1 A Field of Study

Artificial intelligence is a field of study that encompasses computational tech-
hiques for performing tasks that apparently require intelligence when performed
by humans. Such problems include diagnosing problems in automobiles, com-
puters and people, designing new computers, writing stories and symphonies,
finding mathematical theorems, assembling and inspecting products in factories,
land negotiating international treaties. It is a technology of information process-
ing concerned with processes of reasoning, learning, and perception.
Fundamental issues of artificial intelligence involve knowledge representation,
search, perception and inference. Knowledge can be available in many forms: col-
lections of logical assertions, heuristic rules, procedures, statistical correlations,
etc. Much of Al is concerned with the design and understanding of knowledge-
representation schemes. How can knowledge be represented so that it (a) can be
easily used in reasoning, (b) can be easily examined and updated, and (c) can
be easily judged as relevant or irrelevant to particular problems?

Search is a key issue because it is usually easy to invent brute-force algorithms
to solve problems, but they fail on all but “toy” problems. An understanding
of search techniques can help us to avoid the “combinatorial explosion” that
swamps the brute-force attempts.

Inference is the process of creating explicit representations of knowledge from
implicit ones. It can be viewed as the creation of knowledge itself. Deductive
inference proceeds from a set of assumptions called axioms to new statements
that are logically implied by the axioms. Inductive inference typically starts
with a set of facts, features or observations, and it produces generalizations,
descriptions and laws which account for the given information and which may
have the power to predict new facts, features or observations.

1.3.2 AI: Art or Science?

One difference between a science and an art is that a science consists, in good
part, of a body of proved principles that have been abstracted from nature
through processes of empirical inquiry and logical deduction. That physics is
a science is not contested. On the other hand, an art is for the most part a
collection of techniques, developed pragmatically to a sophisticated level, but
not necessarily in a logical way. Most cooks would agree that cooking is an art
rather than a science.

Artificial intelligence is both an art and a science. The activity of devel-
oping intelligent computer systems employs both proved mathematical princi-
ples, empirical results of studying previous systems, and heuristic, pragmatic
programming techniques. Information stored in relational data structures can
be manipulated by well-studied techniques of computer science such as tree-
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searching algorithms. At the same time, experimental or vaguely understood
“rules of thumb” for problem solving are often crucial to the success of a system
and must be carefully accommodated in intelligent systems.

The field of Al is fascinating because of this complementarity of art and
science. There is a lot of room for creativity in Al, and yet there is a growing
body of mature ideas that are beginning to give more rigorous support to the
practice of AL

1.3.3 A Purpose

The most important purpose of artificial intelligence is to increase man’s under-
standing of reasoning, learning, and perceptual processes. This understanding
is desirable for two reasons: it is needed in order to build useful new tools and
it is needed in order to achieve a more mature view of human intelligence than
currently exists. The development of new tools is important because they may
have commercial value, they may improve the quality of our lives through better
products or entertainment, or they may increase the efficiency of governments
and companies. In the author’s opinion, a deeper understanding of human intelli-
gence and its limitations is extremely important, for it might lead to suggestions
for partially resolving many of the political and religious disagreements in the
world that currently pose a great threat to the human race.

1.4 Artificial Intelligence Comes of Age
1.4.1 Growth of the AI Research Community

While the intellectual challenge to designers of artificial intelligence has been with
western civilization for centuries, it is only very recently that a glint of practical
feasibility has shown on a wide variety of applications. During the early and mid-
nineteen-sixties, overly ambitious projects in automatic English/Russian trans-
lation not only failed to produce the promised systems, but dampened respect
and enthusiasm for Al as a field. Critics of Al, of whom some were very “anti-
computer” as well, lambasted these early failures and claimed that Al is impos-
sible, although their arguments, typically couched in the vague terminology of
phenomenological philosophy, have always been fallacious.

Today, however, the field has recovered. Many scientists, engineers, and
programmers are studying Al techniques and building AT systems. National and
international organizations dedicated to Al have been formed and are growing.
In the U. S., the American Association for Artificial Intelligence now holds a
conference each three out of four years, at which research results are reported,
tutorials are offered, and an exhibition of equipment and books is held.

The pendulum may even have swung back too far. Amidst the current ex-
citement about Al, some voices are making claims that cannot be substantiated.
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[t is the hope of the author that this book will help in some small way to keep
the field on an even keel by presenting the elements of artificial intelligence as
they are, describing their limitations as well as their assets.

1.4.2 The Industrialization of Al

[Unlike the early sixties, today a much deeper understanding of the problems
and solutions in the major domains of Al provides a solid base for many Al
systems and ventures. The intricacies of natural language translation are not
yet completely understood. However, enough is known to permit useful systems
to be constructed; several commercial ventures have recently been launched in
computer-assisted language translation. Machine vision is now practical in areas
of robotics, biomedical microscopy, and materials analysis, even though a good
many basic questions of vision have yet to be answered. The market for expert
systems has begun to open up, and now we see only the first few houses of what
will become a large metropolis.

1.4.3 What An AI Practitioner Does

For the next decade, the majority of artificial intelligence engineers are likely to
be designing expert systems. Their jobs will often be to work with experts in
particular fields such as medicine, corporate finance, astrophysics and anthro-
pology to develop suitable representations for the knowledge in each field. The
[knowledge must be put into a form on which useful inferences can be made au-
tomatically. Such work is challenging and at the forefront of the information
revolution.

In addition to developing knowledge representations, suitable displays and
means of access must be designed for users. Natural language and CRT interfaces
[must be designed, often with capabilities particular to each application.

After an expert system has been designed and debugged it may require main-
tenance. New knowledge must be added; heuristics found to be inferior need to
be replaced; new technology may need to be incorporated. There is usually room
for improvement in fields such as medical diagnosis, mathematical theorem prov-
ing, anthropology, etc. Post-installation changes to expert systems are likely to
keep Al practitioners in work for a long time to come.

Some AI people will be scientists continuing to study basic mechanisms of
machine learning and problem solving. The field is sufficiently rich that many
basic issues, such as optimal search, probabilistic reasoning and inductive infer-
ence, will provide open problems for many years.

1.5 Philosophical Challenges

The existence of artificial intelligence puts a new light on much of philosophy.
“Can a machine think?” People often feel threatened by the possibility that a
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machine can think. It suggests that they, too, are machines or no better than
machines. Without an understanding of how the machine works, the intelligence
of the machine is a mystery to them, and the machine may seem to be an
instrument by which the machine’s creators might replace or overpower and
control them.

People argue this question at higher levels of sophistication than in the past,
but the debate continues. An excellent presentation of some of the views on this
may be found in Pamela McCorduck’s book Machines Who Think.

1.5.1 Turing’s Test

One of the philosophical problems of Al is also a practical problem. How can
one tell when artificial intelligence has been achieved? A manager who wants
to evaluate an Al project may well need a way to answer this question. The

" traditional answer to this question is that artificial intelligence is manifested in

a machine when the machine’s performance cannot be distinguished from that
of a human performing the same task. This answer is based on a suggestion by
Dr. Alan Turing that comparison with a human be the criterion by which it is
decided whether or not a machine can think. Turing’s test is to put a human and
a machine in one room, and another human, the “interrogator,” in a separate
room, perhaps as illustrated in Fig. 1.1. The interrogator may ask questions

A B
machine intermediary human

system %
,]

interrogator % )\B
AT

Figure 1.1: Turing’s test. The interrogator (a human) must distinguish the
other human from the machine.

to either the other human or the machine, referring to one as A and the other
as B. However, the interrogator is not told which of A or B is the human or
which is the machine. The interrogator cannot see or hear the others but passes
messages through an intermediary, which could be an electronic mail system or
could be another person. As they respond to questions, A and B each compete
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with one another to convince the interrogator that he/she or it is the human.
If the machine can win, on the average, as often as the human, then it passes
the “Turing test,” and, by this particular criterion, can think. In practice, the
outcome of such a test would probably depend heavily on the humans involved,
as well as the machine.

As we grow more sophisticated, we realize that the question of whether a
system is intelligent is a shallow one. We should be asking about the kinds,
quality and quantity of knowledge in a system, the kinds of inference that it
can make with this knowledge, how well-directed its search procedure is, and
what means of automatic knowledge acquisition are provided. There are many
dimensions of intelligence, and these interact with one another.

1.5.2 Al and Human Beliefs

Studies in several areas of AI—concept formation, abstraction hierarchies, belief
representation, and truth maintenance systems-—provide plausible explanations
for some intellectual limitations of human beings. People develop prejudices
by automatically forming generalizations even when it is statistically invalid to
do so. People are willing to adopt fantastic beliefs and maintain them in light
of serious inconsistencies, provided the beliefs supply plausible explanations for
certain questions that are emotionally central. What are beliefs? Can they or
should they be represented in systems as if they were knowledge? Is a man
or a woman just the sum of his or her beliefs? Can a person or personality be
represented in a machine? If so, does this permit a kind of morality or immorality
to be manufactured? What kinds of laws should there be to regulate societies of
intelligent machines?

The fact that Al brings up so many questions like these contributes to the
excitement of an involvement with artificial intelligence. For years, most scien-
tists have treated computers as fairly stupid tools. More and more people are
realizing not only that computers are changing the way our society processes
data, but that the ideas of computing are bringing some intellectual traditions
into question, changing how we think about ourselves. Al is at the forefront of
this computer revolution.

1.6 The Reference Literature

Beginning with the volume of collected papers, Computers and Thought, edited
by E. Feigenbaum and J. Feldman in 1963, there has been a gradual growth of
books that can be considered basic books in Al. Computers and Thought is not a
text, but it introduced the subject of Al using two kinds of papers: (1) method-
ological articles such as A. Turing’s “Computing Machinery and Intelligence,”
and M. Minsky’s “Steps Toward Artificial Intelligence;” and (2) descriptions of
computer programs. Some of the programs are (a) the “Logic Theory Machine”
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of A. Newell, J. Shaw, and H. Simon, and (b) a geometry theorem-proving pro-
gram by H. Gelernter.

The first textbook was Artificial Intelligence: The Heuristic Programming
Approach, by J. Slagle. This book surveys some of the programs for game-
playing and problem-solving that had been completed by the early 1960’s. The
principle of minimax analysis of a game tree is presented there in a clear way.

A text by N. J. Nilsson entitled Problem Solving Methods in Artificial Intel-
ligence appeared in 1971. It presented two key topics in a straightforward and
pleasing way. The first topic is that of searching through a space of problem
configurations called states. The second topic is the use of the predicate calculus
in automatic reasoning. This text is mathematical in style when compared with
most of the other Al texts.

The books by Slagle and Nilsson each treated relatively specific parts of Al as
might be expected for the time. A book that covers cognitive models, perception
and inductive methods such as clustering of patterns for subsequent recognition,
in addition to theorem proving, was the book Artificial Intelligence by E. Hunt.
This book covers a much greater variety of mathematical techniques than did its
predecessors. Occasionally the treatment is dense, but the variety and depth of
topics treated continue to make the book useful.

An introduction to Al suitable to readers who want a flavor for the issues
and applications of Al without getting deeply involved in technique was written
by P. Jackson in 1974. A book giving a similar variety of topics but including
the basic techniques of AI was written by B. Raphael. It appeared in paperback
form in 1976, and it was entitled The Thinking Computer: Mind Inside Matter.

A course for college undergraduates at MIT was developed by P. Winston,
currently director of the AI laboratory there. This course concentrated on the
systems and studies done at the MIT laboratory, nonetheless spanning a con-
siderable range of topics. The course notes developed into the text Artificial
Intelligence (bearing the same title as Hunt'’s book). This was the first Al text
to include LISP programming techniques as part of the core material.

In 1981, Nilsson published a second Al text, entitled Principles of Artificial
Intelligence. Like his earlier Al text, this one emphasizes search and the predicate
calculus as the key components of Al systems. The treatment of both topics is
expanded in the new book. In addition, the programming methodology called
“production systems” is examined as a means of implementing the search and
deduction methods espoused. Extensive bibliographical material on production
systems, problem-solving, plan-generation and theorem proving is given.

A text, Artificial Intelligence by Elaine Rich, was published in 1983. It
surveys Al in a style comparable to Raphael’s The Thinking Machine. Although
there is a relatively scanty treatment of vision, Rich’s text has particular strength
in knowledge representation. A graduate-level text Introduction to Artificial
Intelligence by E. Charniak and D. McDermott emphasizes the computational
modelling of human faculties.

The majority of writings on Al are research papers. Some good collections
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of these papers are the following:

1. IJCAI Proceedings. Every two years starting in 1969 there has been an
“Internationa} Joint Conference on Artificial Intelligence.” The proceed-
ings of these contain many papers covering all the major topics in AL

2. AAAT Proceedings. Starting in 1980, there has been a conference each
year, (except years when the IJCAI is held in North America) sponsored
by the American Association for Artificial Intelligence.

3. Technical Reports from major centers. During the 1970’s most of the
published research on Al came out of large centers that were sponsored
by the Department of Defense. Some of these centers were the Stanford
Artificial Intelligence Lab., the MIT AI Lab., and the Computer Science
Department at Carnegie-Mellon University.

4. Journal of Artificial Intelligence. A limited number of papers of high aca-
demic quality are published in this journal by North-Holland Publishers.

5. IEEE Transactions on Pattern Analysis and Machine Intelligence. The
majority of the papers published here have focussed on computer vision
and pattern recognition, and this publication has more of an engineering
orientation than the Journal of Artificial Intelligence.

6. The AI Magazine. This periodical contains semi-academic articles, book
reviews, news items, and paid advertising. It is published by the AAAI

7. SIGART Neusletter. News items and unrefereed articles can be found
several times a year in this publication by the Association for Computing
Machinery Special Interest Group on Artificial Intelligence.

The three Al programs mentioned earlier, MOLGEN, ACRONYM, and AM,
are described in more detail in Volume 3 of the AT Handbook (edited by Cohen
and Feigenbaum).
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Chapter 2

Programming in LISP

2.1 Introduction

The programming language LISP was developed at the Massachusetts Institute
of Technology in the late 1950’s under the direction of J. McCarthy. It was
designed specifically for list processing: that is, the manipulation of symbolic
information (it does have a capability for numerical data handling as well, but
it was designed primarily for non-numerical computation). The language was
based in part on the “lambda calculus” of A. Church; the lambda calculus is
a formal, applicative language with interesting theoretical properties. LISP is
especially good for applications in artificial intelligence, and is the most widely
used language for this purpose.

LISP gives the programmer great flexibility and power. Data structures are
created dynamically without need for the programmer to explicitly allocate mem-
ory. Declarations for data are not necessary, and a LISP atom, acting as a
variable, may represent one kind of object (e.g., an integer) at one time and a
completely different kind of object (e.g., a binary tree) a little later. Using one
basic data-structuring concept, the “S-expression,” both programs and data are
easily represented. Execution of programs written in LISP is normally accom-
plished by an interpreter program; thus a compiler is not necessary. Occasionally
a compiler is used to optimize relatively fixed parts of a particular software col-
lection.

A LISP program consists of several function definitions together with other
statements which work together to perform the desired task. Usually, one writes
the function definitions using a text editor or a structure editor. In MACLISP
(and some of its derivatives) one edits function definitions in an external text
editor. In UCILISP and most versions of INTERLISP there is a structure editor
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built into the LISP system which may be used. In either case the programming
process usually proceeds through iterations of program modification and program
testing. The interactive nature of LISP makes it possible to enter definitions
directly into the LISP system, without the use of an editor. However, if there
is no editor within the LISP environment (of the implementation you are using)
as in MACLISP, it is usually too inconvenient to edit the functions within the
LISP system. '

The program statements of LISP are essentially functional forms. However,
since these functional forms can and usually are nested to a large extent, one
normally does not refer to particular lines of LISP code as statements.

In this chapter the LISP language is presented, beginning with the underlying
representation for LISP programs and data: S-expressions. We then describe
how operations are expressed as functional forms. Gradually, we increase our
vocabulary of functional forms until we can conveniently understand and write
functions in LISP that are useful in artificial intelligence experiments.

2.2 S-Expressions

All data and program statements in LISP are represented in terms of S-
expressions. S-expressions often appear as lists of items enclosed in parentheses,
but they are actually more general. An S-ezpression is either an “atom” (see
below), a list of S-expressions, or a “dotted pair” (see below) of S-expressions.
(The definition for S-expression which will be stated more formally later is re-
cursive.) Before defining each of these three types of S-expressions, let’s consider
some examples of S-expressions.

A a literal atom
SAMPLELITERALATOM a literal atom

4 a numeric atom

(ABCD) a list of S-expressions

(A (DOG CAT) 7) a list of S-expressions

(A . B) a dotted pair of S-expressions
(DOG . (CAT . MOUSE)) a dotted pair of S-expressions

The first three of these examples are atomic S-expressions while the last four are
composite.

“Atoms” are the basic building blocks of S-expressions. An atom is either a
“numeric atom” such as an integer (e.g., —25) or a floating point number (called
a FLONUM, e.g.,, 107.3), or a “literal atom,” very much like an “identifier” of
other programming languages such as PASCAL. A literal atom is described as
a string of characters beginning with a letter, the characters generally being
restricted to letters, digits and a few other characters.
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Let us now give a formal definition of “S-expression.” The definition is re-

cursive, and in its course are also defined the terms “dotted pair” and “list.”
1. Any atom is an S-ezpression.

9. If X and Y are S-expressions then (X . Y) is an S-ezpression and is also
called a dotted pair.

3. If $1,59,...,5k are S-expressions, then (S; Sz --- Si) is an S-expression
and is also called a list.

4. Only an object formed by a finite number of applications of rules 1, 2 and
3 is an S-expression.

Thus atoms may be put together to form more complicated S-expressions
using either the dotted-pair construction or the list construction. Although the
list construction is far more common in actual usage of LISP, we begin here
describing the dotted pair construction because understanding it gives a clear
idea of how S-expressions are represented in a computer’s memory, and it is then
easy to understand how lists are represented, too. A LISP system can seem
mysterious without some good notions of how its structures fit into the machine.

A dotted pair (as we have defined it) consists of an ordered pair of S-
expressions, which by convention are written separated by a period and sur-
rounded by parentheses. For example, two atoms A and B may be written in
the following way to represent the dotted pair of A and B:

(A . B)

The resulting pair is an S-expression which may be further combined with other
S-expressions to build larger ones.

2.2.1 Machine Representation of S-expressions

The main memory of a LISP system is logically divided up into “cells.” A cell is
typically two machine words of storage and represents a dotted pair. Denoting
each cell by a rectangle with two halves containing arrows or atoms, the printed
and the diagrammed representations for two dotted pairs are shown in Fig. 2.1.
The letters A through D within the rectangles indicate the presence of pointers
to literal atoms. The arrows represent pointers to subexpressions.

Before we expand on the nature of lists in LISP, we must mention a literal
atom “NIL” which has special significance. The atom NIL is used in LISP for
several purposes. The most important of these is as a marker at the end of a
chain of pointers in memory. (In other words, NIL is used to terminate lists.
Later in this chapter we shall see how NIL also serves to represent the boolean
value “false” in many contexts.) The third diagram in Fig. 2.1 contains such a
chain, and the diagonal slash is used to indicate NIL.
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[A]B] (A .B)

(A.B).(C.D))

|aB

(A B C)

Figure 2.1: Printed and diagrammed representations of S-expressions in mem-
ory.

As defined above, a list is a sequence of S-expressions, separated by spaces,
and surrounded by a pair of parentheses. When the number of S-expressions in
the sequence is zero, the list is empty and may be written as:

0

The atom NIL is an alternative way to indicate the empty list. “NIL” and “()”
are equivalent.

2.2.2 Correspondence Between Lists and Dotted Pairs

Except for the empty list, NIL, a list is always equivalent to some dotted pair of
a particular kind. The machine representation for a list and its corresponding
dotted pair are identical. For example the list illustrated in the third diagram
of Fig. 2.1 is equivalent to the dotted pair

(a . (BC))

Eliminating the sublists by converting into dot notation as far as possible yields
the S-expression below, which is the dot-notation equivalent of the original list.

(A . (B . (€ .NL))

Note that the last atom in the dotted-pair representation of a list is always the
special atom NIL.

Using the fact that NIL is equivalent to () and the fact that an expression
of the form (X . NIL) is equivalent to one of the form (X), it is not difficult to
see that the following three S-expressions are equivalent:
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(NIL . NIL)
- M
(6D

Here are some additional examples of dotted-pair expressions which have
equivalent list forms:

in dot notation in list notation

(A . NIL) V)

((X . NIL) . (Y . (2 . NIL))) | ((X) Y 2)

((APPLE . BANANA) . NIL) ((APPLE . BANANA))

Any list can be re-expressed in dot notation (also called dotted-pair notation).
However, only certain S-expressions in dot notation can be converted into list
notation!. For example, the dotted pair (A . B) is not equivalent to any list. It
doesn’t even contain the atom NIL, which is a required terminator for any list.
The third example above shows an S-expression which cannot be completely
converted to list notation. The right-hand version is clearly a list, but one of its
elements is a dotted pair that cannot be expressed as a list. Any S-expression
which is not an atom is composite. In practice, lists probably account for 98%
of all composite S-expressions that are actually used. Arbitrary dotted pairs,
once common because they are more space-efficient, are used infrequently today,
since list notation is a more convenient representation for the programmer to
work with than is dot notation.

2.3 Functional forms

2.3.1 Some Forms and Their Evaluation

In order to get a computer system to perform operations, it is necessary to give
it some instructions. In LISP, one does this by presenting the computer with
special S-expressions called “functional forms.” A functional form consists of
a list whose first component is the name of a function and whose subsequent
components are arguments to that function. An example is the following:

(ADD1 5)

Here “ADD1” is the name of a function and 5 is an S-expression that plays the
role of an argument to the function. By typing in such an S-expression to the
LISP system the programmer is requesting that LISP evaluate that function on
those arguments. After typing it, LISP responds with “6.”

1By examining the memory diagram for an S-expression in dot notation, we can deter-
mine whether or not it can be converted into list notation (such that the resulting expression
contains no dots). The diagram may be viewed as an ordered binary tree. Each chain con-
sisting only of arrows leaving right-hand sides of memory cells must terminate at a cell whose
right-hand side contains NIL.
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Most of the functions commonly provided in LISP systems are shown in
Fig. 2.2. The various kinds of functions are described throughout this chapter.
An alphabetical listing of LISP functions with brief descriptions is given in an
appendix.

2.3.2 Nested Forms

Arguments to functional forms can themselves be functional forms. For example,
the following form produces the value 47:

(PLUS 2 (TIMES 5 9))

Thus, subexpressions such as (TIMES 5 9) in the form above are treated as
functional forms themselves. When the LISP system computes the value of the
whole expression, it first evaluates the subexpression (getting 45 in this example)
and then this partial result is used as an argument to the outer function (here
PLUS) and the final value is computed.

2.4 CONS, CAR and CDR

In our definition of “S-expression” we gave rules for composing dotted pairs and
lists. There are functional forms that perform such construction and also for
taking out the parts of a composite S-expression. The name for the operation of
putting two S-expressions together to form a dotted pair is “CONS.” CONS is
a binary operation taking two S-expressions and returning a new S-expression.
Here are two examples using CONS to build larger S-expressions:

(CONS 1 2) produces the value (1 . 2)
(CONS 1 NIL) produces the value (1)

When the CONS operation is performed, a cell of memory is allocated, and
the contents of the left and right halves are set to the values of the two arguments.

When the second argument to CONS is a list, the effect of the CONS is to
create a new list in which the first argument to CONS is the element of the
list, and the second argument is the remainder of the list. Thus, if  and y are
S-expressions whose values are 1 and (4 5 6), respectively, then (CONS z y)
produces the value (1 4 5 6).

Functions which extract the components of a dotted pair (and therefore also
access parts of lists) are CAR and CDR. CAR takes a composite S-expression and
returns as value the first component S-expression. Applying the CAR function
to the dotted pair (A . B) produces A as value. The effect of CAR on a list is
also to produce the first element of the list as value. Thus CAR applied to the
list (X Y Z) produces X as value.
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Input and Output:
(READ S)

(TYI)

(PRINT S)
(TERPRI)

(TYO N)

List Structure Manipulation:
(CONS S1 82)

(CAR 8)

(CDR S)

(CAAR S)

(CADR S)

(CDAR 8)

(CDDR S)

(APPEND L1 L2 ... Lk)
(RPLACA S1 S52)

(RPLACD S1 S2)

(NCONC L1 L2)

Evaluation-related:
(EVAL S)

(APPLY F L)

(MAPCAR F L)

(LIST S1 82 ... Sk)
(QUOTE $S)

(FUNCTION S)

(SET S1 82)

(SETQ A S)

Control Forms:
(COND (S1a Sib)
(S2a S2b)

(Ska Skb) )
(PROG L S1 S2 ... Sk)
(G0 4)
(RETURN S)

L

Predicates:
(NULL S)

(ATOM S)
(NUMBERP S)
(EQ A1 A2)
(EQUAL S1 82)
(LESSP N1 N2)
(GREATERP N1 N2)
(ZEROP N)
(ONEP N)
(MEMBER S1 S2)

Logical Functions:
(AND S1 S2 ... Sk)
(OR S1 S2 ... Sk)
(NOT S

Arithmetic:

(ADD1 N)

(SUB1 N)

(PLUS N1 N2 ... Nk)
(TIMES N1 N2 ... Nk)
(DIFFERENCE Ni N2)
(QUOTIENT N1 N2)
(REMAINDER N1 N2)
(MAX N1 N2 ... Nk)
(MIN N1 N2 ... Mk)

Punction and Property Definition:

(DEFUN A L S)
(DEFEXPR A L S)
(LAMBDA L S)
(PUTPROP A S1 S2)
(GET & S)

(PLIST A)

Debugging:

(TRACE F1 F2 ... Fk)
(UNTRACE F1 F2 ... Fk)
(BREAK)

b SI Al ol ¢ !

Figure 2.2: Functions commonly provided in LISP systems. Note that the values

an S-expression
a list

a number

a function

a literal atom

of arguments have the types indicated.
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Similarly, CDR produces the second component of the dotted pair as value.
CDR applied to (A . B) produces B. Applied to a list, CDR returns as value the
list, missing its first element. Thus the CDR of the list (X Y Z) is the list (Y Z).

In a sense, each of CAR and CDR is a partial inverse of CONS. Evaluating
the following functional forms illustrates this

(CAR (CONS 1 2)) produces the value 1
(CDR (CONS 1 2)) produces the value 2

However, as we shall see later when we discuss the special functional form
SETQ, neither CAR nor CDR nor both taken together necessarily undo the
effect of CONS.

Functional forms built up using CONS, CAR and CDR can be used to create
and access parts of arbitrarily complex S-expressions. By putting S-expressions
together with CONS, arbitrarily large S-expressions may be formed.

(CONS 5 (CONS (CONS 6 (CONS 1 2)) 8))

produces (5. ((6. (1. 2)). 8)).

Combinations of CAR and CDR are needed so often to access various com-
ponents of S-expressions that additional functions are provided in most LISP
systems to abbreviate the more common combinations. The following twelve are
standard; some implementations provide more. Each combination is shown in
the left column and its corresponding abbreviation is in the right-hand column:

(CAR (CAR X)) (CAAR X)
(CAR (CDR X)) (CADR X)
(CDR (CAR X)) (CDAR X)
(CDR (CDR X)) (CDDR X)
(CAR (CAR (CAR X))) (CAAAR X)
(CAR (CAR (CDR X))) (CAADR X)
(CAR (CDR (CAR X))) (CADAR X)
(CAR (CDR (CDR X))) (CADDR X)
(CDR (CAR (CAR X))) (CDAAR X)
(CDR (CAR (CDR X))) (CDADR X)
(CDR (CDR (CAR X))) (CDDAR X)
(CDR (CDR (CDR X))) (CDDDR X)

The general rule for combining several CARs and CDRs together is that one
forms a string by concatenating the middle letters (A’s or D’s) of all the instances
in the same order that they appear in the expanded form, and then a C is prefixed
and an R suffixed to the string.




| 25. QUOTE AND SETQ 23

2.5 QUOTE and SETQ

There are exceptions to the general pattern of evaluating functional forms that
has been described so far. For example, a special functional form is QUOTE.
The QUOTE of something evaluates to itself. Another special form is SETQ,
used for saving a value by associating it with an atom.

2.5.1 QUOTE

QUOTE is used to suppress the evaluation of an S-expression in a place in which
it would otherwise be evaluated. Here are examples:

(PLUS 1 2) produces 3

(QUOTE (PLUS 1 2)) produces (PLUS 1 2)
(QUOTE A) produces A

(CAR (CONS 1 2)) produces 1

(CAR (QUOTE (CONS 1 2))) produces CONS
*(PLUS 1 2) produces (PLUS 1 2)

As the last example shows, there is an abbreviation for the QUOTE form.
This is the single quote mark. Thus, X is equivalent to (QUOTE X). Note
that the quote mark avoids having to use one pair of parentheses needed by the
canonical version of the QUOTE form. It is often useful to precede an argument
to a function by a quote mark so that the argument will evaluate to itself before
the function is applied. Consider the next example.

(CONS (CAR ’(A . B)) (CDR ’(C . D)))

Here the top-level function in this functional form is CONS. There are two ar-
guments to it. In this case the first is the smaller functional form (CAR (A .
B)) and the second is the functional form (CDR *(C . D)). Before the top-level
function CONS can be applied to the arguments, those arguments must be eval-
uated. The first subexpression (CAR ’(A . B)) produces A upon evaluation. The
second subexpression, (CDR ’(C . D)), produces D. The value of the top-level
form is now equivalent to that of the form (CONS ’A 'D) which in turn is (A.
D).
Note that the form

(CAR (X Y))

will usually cause an error (unless the programmer defines X to be a function),
unlike the form

(CAR (X )

which yields the value X.
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|:.5.2 SETQ

s we have already seen, (PLUS 5 7) is a sample functional form in LISP. When
LISP interprets this form, the function PLUS will be applied to the arguments
b and 7. The value of this form, 12, will then be computed and returned. Such
v functional form may be typed directly into LISP and the system will evaluate
t and print its value.

If it is desired to have the system remember a value, a form such as the
ollowing could be used.

[SETQ X (PLUS 5 7)).

['his form first evaluates the PLUS expression and then assigns its value to the
ttom X. After this form has been evaluated, the expression X may be evaluated
o recall the value 12. Note that there is no need to declare X to be a variable.
ts mere mention in the expression is sufficient to make LISP treat it as one.
Also, note that there is no need to quote the argument X here. The first
irgument to SETQ is automatically quoted; in fact, SETQ is short for “SET
DUOTE.”
The expression above has the same effect as the following one using SET,
yhich is not a special form:

SET ’X (PLUS 5 7)).

2.6 Special Forms

Qertain functional forms are called “special” forms. Special forms are either
ose that take a variable number of arguments, rather than a number fixed by
e function definition, or those that do not have their arguments evaluated at

ntry in the standard way. We have already seen two special forms, QUOTE and

ETQ. The single argument to QUOTE is not evaluated, and the first of the two

rguments to SETQ is not evaluated. An example of a form that is considered
ecial even though all its arguments are evaluated uses the arithmetic function
AX. Any number (1 or more) of arguments may be supplied to MAX. For
ample, (MAX 3 7 2 10 -3) produces the value 10. Actually, PLUS is also a
ecial form in most LISP implementations, so that, for example, (PLUS 136

0) is legal and produces the value 20.

Another special form is the AND function form. Evaluation of (AND
¥, E; --- E}) proceeds by successive evaluation of subexpressions E}, F5, until
dne is found with value NIL, at which point the value NIL is returned as the
\Lalue of the whole form. If none of the subexpressions evaluates to NIL, then T
ip returned as the value of the whole form. Like MAX, AND takes one or more
grguments. Unlike MAX, it is possible that some of the arguments to AND are
Ilever evaluated.
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LIST is a special form which takes any number of arguments and returns a
list of their values.

(LIST 2 (PLUS 2 7) (CONS ’A ’B)) produces (29 (A . B

Other special forms are COND and PROG, which control the evaluation of
their enclosed subexpressions. These are described later.

2.7 Predicates

Predicates are functions that return values normally interpreted as Boolean truth
values. For example, (LESSP 3 5) returns the value T, whereas (LESSP 3 3)
returns value NIL. This predicate tests to see whether its first argument is less
than its second argument. Another predicate (GREATERP 3 5) returns NIL in
this instance. The special form AND described earlier may be considered to be a
predicate. It is interesting to note that in most LISP implementations, any value
not explicitly NIL is taken to mean “true” in any logical test. Consequently, a
predicate may return any value except NIL to indicate a true condition. Thus
(AND ’A 'B) may evaluate to T, to B or to any non-NIL value depending upon
the implementation. Like AND, OR is a special form which produces a logical
result. Other examples of predicates that are standard are ATOM and NULL.
(ATOM X) evaluates to T if X is an atom, NIL otherwise. (NULL X) evaluates
to T only if X is NIL, and NIL otherwise. Most LISP systems recognize NOT
as a synonym for NULL. (NUMBERP X) yields T if X evaluates to a numeric
atom.

The predicate EQUAL can be used to compare any S-expression with another.
For example (EQUAL *(A B (C)) ’(A B (C))) returns T. There is a more efficient
function, EQ, that can be used if the arguments are literal atoms. For example,
(EQ’A’A) produces T and (EQ’A 'B) produces NIL. However, EQ may produce
NIL even if given two arguments that are EQUAL, if the arguments are numeric
or non-atomic?.

2.8 COND

Several special forms are particularly useful in controlling the execution of LISP
programs. One of these is COND. A COND form (or “conditional form™) takes
an arbitrary number of arguments called clauses, each of which is a list of two
S-expressions. The general format of a COND form is as follows:

(coNp (C, Ey) (Cy Ey) --- (C, ED)

2[ most LISP systems, EQ returns T if the two pointers that result from evaluating the
two arguments are the same; thus two different pointers to similar structures would lead to
EQ returning NIL.
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The subexpressions C; represent conditions, and the subexpressions E; rep-
resent corresponding actions or results.

The value returned by the COND form depends upon the values of one or
more of the C; and precisely one of the E;. Suppose that the first C; whose
value is not NIL is Cy. Then the value returned by COND is the value of
Ef. If none of the C; are true, the value returned by COND is undefined. In
programming practice usually the last C; is the constant T. Programming in this
manner is analogous to the use of an ELSE clause with the IF construction in
other programming languages.

For example,

(COND (NIL 1) (T 2) (T 3))

produces the value 2. As another example, the following sequence results in the
value B.

(SETQ X °A)
(SETQ Y NIL)
(COND (X ’B) (Y ’C))

Most modern LISP interpreters accept a more general format for COND.
Instead of requiring that each E; be a single S-expression, they permit one or
more expressions to follow each C;. A clause then has the form:

(C E, Ey --- Ep).

After a C; is found to be the first condition that is not null, the corresponding
sequence of expressions is evaluated in order, and the last one’s value gives the
value for the entire COND form. This feature is sometimes referred to as the
“implicit PROG,” and the reason for this will be clear later when the PROG
form is discussed. We will occasionally rely on this feature in subsequent chapters
because it helps make programs shorter and easier to read.

Many function definitions are based upon the COND form. In order to illus-
trate this, we turn now to the general problem of defining functions in LISP.

2.9 Defining Ordinary Functions

A LISP program consists primarily of a set of function definitions. The pro-
grammer writes these functions so that they work together to perform a given
task. There are several ways in which functions can be defined, but the most
common method is using DEFUN. (Later sections describe how special forms
and LAMBDA expressions can be defined.)
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2.9.1 DEFUN

To define a new function in LISP, the programmer gives the system a special
form. The usual general format for a function definition is as follows:

(DEFUN function-name argument-list function-body)

When this form is evaluated, the LISP system will enter a function definition
into the LISP system under the name represented by function-name. The list of
arguments indicates what parameters used by the function are to be bound to
values when the function is called. The body is a functional form which expresses
the value that the function is to return in terms of its argument values when it
is called. For example, we can define a function which computes the square of a
number as follows:

(DEFUN SQUARE (X) (TIMES X X))

Once the definition has been evaluated, we can make use of it; for example,
typing

(SQUARE 7)

would result in the value 49 being returned.

In most respects a LISP function is conceptually similar to a function or sub-
routine in a programming language such as PASCAL, FORTRAN, or PL/I. An
interesting difference is that the arguments are not constrained by declarations to
particular types; that is, each argument need only be some S-expression. When
a function is called, the arguments in the calling form are paired (“bound”) with
the formal arguments in the definition. Then the body is evaluated. (If there is
an incompatibility between an S-expression and an operation to be performed
on it, such as in trying to add 5 to the literal atom A, a run-time error will be
reported.)

2.9.2 Recursive Definitions of Functions

Functions to perform complex operations are generally defined in terms of sim-
pler ones. However, it is often useful to define a function in terms of itself. More
particularly, the function applied to a complex object can be defined as a com-
bination of results of applying the same function to components of the complex
object. Such function definitions are recursive.

Below is a function definition based upon COND. The function computes the
length of a list (i.e., the number of top-level S-expressions).

(DEFUN LENGTH (LST)
(COND ((NULL LST) 0)
(T (ADD1 (LENGTH (CDR LST)))) ) )
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This function may be applied to any list to return an integer. For example, the
length of ’(A B C D) is 4, and the length of '(THIS (IS (A (NESTED (LIST)))))
is 2. The function has one formal parameter, namely LST. The body consists
of a conditional form (a “COND”), in this case having two clauses. Each clause
has two parts, a condition and a result. The first clause has as its condition
the expression (NULL LST) and the result 0. This specifies that when the
functional form is evaluated, the argument, LST, is tested to see if it is null, and
if so, the result O is returned. The second clause is there in case the first fails.
[ts condition is T, which is always true and thus forces its result to be returned
if LST is not null. This second result expression, “(ADD1 (LENGTH (CDR
[LST)))”, contains a recursive call to LENGTH, the function being defined. The
argument for the recursive call is the original LST minus its first element. To
evaluate the recursive call, the LISP system evaluates the argument, binds the
argument value to LST after saving the old value of LST on a stack, and then
starts a fresh pass through the body of the function, possibly making additional
recursive calls, if the list whose length is to be determined is long enough. When
the recursive call is finished, the value returned gets 1 added to it by the function
ADD], and this value is the result of the LENGTH computation. The sequence
pf recursive calls in such a situation is sometimes called a spiral of recursion. In
this function, the spiral of recursion eventually starts to unwind when the list
bound to the atom LST gets down to NIL.

A spiral of recursion for the LENGTH function applied to the list (ABCQ)
s shown in Fig. 2.3.

LENGTH(ABC

LENGTH (BC)

LENGTH (C)
:—b LENGTH () )
0

1

2

3
Figure 2.3: A spiral of recursion.

A similar but more interesting example of a recursive function is one that

ounts the number of sublists in a list. The list '(MEAT VEGETABLES
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SWEETS) has no sublists, but the list
» ((BEEF PORK) (POTATO CARROTS) ((APPLEPIE CHERRYPIE) CANDY))

contains four sublists (three of them at the top level, and one at the next level).
A function to count the number of sublists in a list would be awkward to define
without recursion. Here is a recursive definition of COUNTSUBLISTS.

(DEFUN COUNTSUBLISTS (LST)
(COND ((NULL LST) 0)
((ATOM LST) 0)
((ATOM (CAR LST)) (COUNTSUBLISTS (CDR LST)))
(T (PLUS 1
(COUNTSUBLISTS (CAR LST))
(COUNTSUBLISTS (CDR LST)) )) ) )

If we call COUNTSUBLISTS with the S-expression above with 4 sublists,
first the test for null list fails, then the test for atomic argument fails, then the
test for atomic CAR fails, since the CAR of that expression is (BEEF PORK).
Finally the T clause of the COND has to succeed, with the result that three
quantities are added together: the constant 1, the result of calling COUNTSUB-
LISTS recursively on (BEEF PORK) which gives 0, and the result of call-
ing COUNTSUBLISTS recursively on ((POTATO CARROTS) ((APPLEPIE
CHERRYPIE) CANDY)) which returns 3.

Since the definition of COUNTSUBLISTS contains two recursive calls rather
than one, not a spiral of recursion but a tree of recursive calls is followed. Each
recursive call generates a separate branch of the tree. An example is shown in
Fig. 2.4.

As a third example of recursive function definition, consider the function
MATCHKTH below. This function takes three arguments: an “element,” a list
and an integer. It compares the element to the k%" one in the list where k is
specified by the integer. It returns the element if the match was successful and
returns NIL otherwise.

(DEFUN MATCHKTH (ELT LST K)
(COND ((NULL LST) NIL)
((LESSP K 1) NIL)
((AND (EQUAL K 1)
(EQUAL (CAR LST) ELT) )
ELT)
(T (MATCHKTH ELT
(CDR LST)
(SUB1 K) ) ) ) )

We have defined MATCHKTH as a function of the arguments ELT, LST,
and K. The body is a COND having four clauses. The first clause tests for LST
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3

((AB)(CD)E))

/ = recursive call to the CAR of current expression

\ = recursive call to the CDR of current expression

Figure 2.4: A tree of recursive calls for the evaluation of (COUNTSUBLISTS
((A B)((C D) E))).

peing null and returns NIL if so. Otherwise, the next clause checks for K less
than 1 and returns NIL if this is the case. If neither of those two hold, then
he third clause tests first for K equal to 1. If this fails, control falls through
o the fourth clause. However, if K equals 1 then an additional test is made to
ee if ELT is equal to the first item of LST. If this is true, the value of ELT is
eturned. If not, the fourth clause with condition T invokes a recursive call to
MATCHKTH with a list one element shorter and with K reduced by one. The
lepth of the deepest recursive call will be the smaller of K and the length of
.ST.

Here are some examples of the behavior of MATCHKTH:

MATCHKTH >CROISSANT ’(BREAD ROLL CROISSANT) 2)

produces NIL.

MATCHKTH ’CROISSANT °’(BREAD ROLL CROISSANT) 3)

¢
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b produces CROISSANT. The first result is NIL because CROISSANT does not
| appear as the second element of the list. If the last argument were changed to a
k3, as shown in the second example, then the result would be CROISSANT.

| 2.9.3 Appending Lists Recursively

E A useful function for concatenating two or more lists is provided by most LISP
: systems. To show how recursive definitions may help with list manipulation, a
b two-list version is defined below:

(DEFUN APPEND (L1 L2)
(COND ((NULL L1) L2)
(T (CONS (CAR L1)
(APPEND (CDR L1) L2) )) ) )

f This definition says that in order to append list L2 onto the end of list L1, we

E. first check to see if L1 is null. If it is, the answer is just L2. Otherwise, the

answer is the result of appending L2 to the CDR of L1 and then CONS’ing the
CAR of L1 back on.

It is possible to define APPEND as a special form so that it can take any
number of arguments; to do this, one could use the function DEFEXPR, de-
scribed later. In most LISP systems, APPEND is predefined and can take any
number of arguments.

2.9.4 Commenting LISP Programs

Most LISP systems allow comments to be embedded in LISP functions. Com-
ments have no effect on the functions; the LISP interpreter ignores them. How-
ever, they are helpful to the programmer in documenting and annotating the
functions. The use of comments is encouraged. In this book, a semicolon is used
to indicate that the remainder of a line of LISP code is a comment. For example,
we could write

(SETQ X 5) ; Set X equal to 5.

2.10 PROG

The LISP language was developed soon after FORTRAN. Some programmers,
fluent in FORTRAN, found it difficult to design their programs as nested function
calls. They thought in terms of a set of statements expressed and executed in a
sequence, with possible branching using the GOTO statement. The PROG form
allows FORTRAN-like control structure to be embedded in LISP programs. A
sequence of functional forms may be grouped together to function like statements
of a conventional programming language by the use of the PROG form. The
general format of a PROG is:

-

Y e S Il =) = Y. S \ Y 4
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(PROG L F\ F, --- F,)

Here L is a list of local variables, and Fy through F, are individual functional
forms (or they may be atomic “labels”), which may include nested forms within
them. When the PROG is evaluated, local variables will be set up for all the
elements in the list L. Note that L may be NIL. The values of these local
variables will be initially undefined. (The values of any variables external to the
PROG having the same names will be inaccessible within the PROG.) Then the
forms F through F, will be evaluated in sequence unless special provisions have
been made to alter that sequence.

In order to alter the flow of control within a PROG, one may use special
control flow statements such as GO or RETURN. For example, (GO LOOP)
when evaluated, results in control being transferred to the first functional form
following the label LOOP. By nesting GO statements inside of COND arguments,
it is possible to conditionally transfer control within a PROG.

The example PROG below contains two “PROG variables,” X and Y, which
are local to the PROG and have values that are accessible only within the PROG.
The first expression in the PROG’s sequence is (SETQ X 10}, which causes X’s
value to be set to 10. The tag, “LOOP” is not evaluated but passed over, and it
serves only to indicate a position in the sequence for use in the later expression
“(GO LOOP)”. The expression “(PRINT (TIMES Y Y))” first causes the square
of Y to be computed and then causes that value to be printed (on the screen).
The next expression first computes X—1. That value would be lost if it weren’t
then put somewhere; it is then made the new value of X, as prescribed by the
SETQ form. Similarly, the value of Y is changed. The COND first has X checked
to see if it is 0, and if so the RETURN causes the execution of the entire PROG
to be terminated with the current value of Y passed back as the value of the
PROG. If X is not zero, the second clause is activated. Here T evaluates to
itself and forces (GO LOOP) to be evaluated. This simply causes a transfer of
execution back to the expression (PRINT (TIMES Y Y)).

(PROG (X Y)
(SETQ X 10)
(SETQ Y 0)
LOOP (PRINT (TIMES Y Y))
(SETQ X (SUB1 X))
(SETQ Y (ADD1 Y))
(COND ((ZEROP X) (RETURN Y))
(T (GO LOOP)) ) )

The result of evaluating this PROG is the following being printed out:

[y
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9
16
- 25
k36
. 49
64
81

and then the value 10 is returned.

When the evaluator leaves the PROG (in this case via the RETURN), the
values of the local variables are disposed of, and any previous values of atoms
with the same names are accessible again (the local contexts are nested as exe-
cution enters functions and PROGs having local variables). Execution may exit
a PROG not only by evaluating a RETURN expression, but also by “falling
through.” In this case, the value of the PROG is (for most implementations of
LISP) the value of the last expression in it. For example, the following PROG
returns the value 5:

(PROG (X)
(SETQ X 10)
(ADD1 4) )

However, the following PROG is preferable because it is less implementation
dependent, and it makes the programmer’s intentions more specific.

(PROG (X)
(SETQ X 10)
(RETURN (ADD1 4)) )

A PROG need not have any local variables:

(PROG NIL
(PRINT ’NO)
(PRINT ’LOCALS)
(RETURN (SETQ X (ADD1 X))) )

The variable X here is from an outer context, either the global, or a local one
in which this PROG is either embedded statically (via its physical placement
within the S-expressions containing it) or embedded dynamically via function
evaluation. The value of this PROG clearly depends upon the value of that X;
it’s the value of X plus 1.

2.11 EVAL and APPLY
2.11.1 EVAL

Before arguments are passed to most functions, they are evaluated. In fact,
what happens is that a special function in LISP is applied to each argument
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S-expression. That special function is called EVAL. EVAL computes the value
of an S-expression differently depending on whether the expression is a numeric
atom, a literal atom, or a functional form. If the S-expression consists of a
numeric atom, the value is the atom itself. If the expression is a literal atom, its
value is looked up using the current bindings. The S-expression may also be a
functional form. EVAL will first (recursively) evaluate all of the arguments in the
functional form, and then it will apply the function to the results of evaluating
the arguments. The final result will be returned as the value of the functional
form.

EVAL may also be used by the programmer directly to cause an extra eval-
uation to take place. For example, if the value of X is Y, and the value of Y is
Z, then the functional form (EVAL X) would evaluate to Z. (The S-expression
X by itself would evaluate to Y.) EVAL could be helpful in retrieving the value
of an atom whose name is not known until runtime.

EVAL can also be useful in letting LISP evaluate a functional form that
is constructed by the program at runtime rather than by the programmer at
programming time. For example, we could have:

(EVAL (LIST FN ARG1 ARG2))

2.11.2 APPLY

Part of EVAL’s job is actually handled by the built-in function APPLY. The
function APPLY takes two arguments (and in some implementations a third),
pand the form of a call is (APPLY function arglist). When this is evaluated, the
function which is the value of function is applied to the arguments that are the

blements of the list arglist. For example, the following form produces the value
b.

(APPLY °DIFFERENCE ’ (12 7))

Some LISP systems allow APPLY to take a third argument which specifies a
list of bindings of variables to values, that are to be used during the application
bf the function.

2.11.3 LAMBDA Expressions

[t is possible to specify a function in a LISP program without giving it a name or
Palling it by name. This is sometimes convenient when a function is only needed
n one specific place, so that there is no economical advantage to defining it with
ts own name. There is also an advantage of “locality”; it is easier to understand
programs whose functions are specified at the point of use than somewhere far
hway.

A local function specification is accomplished by making a “LAMBDA ex-
bression.” A LAMBDA expression is of the form,
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(LAMBDA argument-list body)
For example, the function 22 + 2y is computed by
(LAMBDA (X Y) (PLUS (TIMES X X) (TIMES 2 Y)))

LAMBDA expressions are most commonly used as arguments to APPLY. For
example, the following computes v

(APPLY (FUNCTION (LAMBDA (X) (TIMES X X X))) (LIST Y))

Here the special form FUNCTION serves to quote the LAMBDA expression,
preventing it from being evaluated.

2.11.4 Closures of Functions

A feature of some implementations is the ability to specify a “closure” of a
function in which all or a selected set of free variables of the function receive
values from the environment in which the closure is performed, rather than the
values they might get in the middle of evaluating the body of the function. Such
a closure, if performed, is executed as an effect of FUNCTION. An example
where closure makes a difference is the following:

(PROG O
(SETQ Y 5)
(RETURN (APPLY (FUNCTION (LAMBDA (X) (PLUS X »»
(LIST (SETQ Y 7)) )) )

Without closure, the value of Y at the time the PLUS operation is performed is
7, as is the value of X. This is because the evaluation of (SETQ Y 7) takes place
before the LAMBDA expression is actually applied to anything. The overall re-
sult is 14. However, with closure, when the FUNCTION expression is evaluated,
the result is not merely that which would have been obtained by quoting the
LAMBDA expression. It is a special LISP object referred to as a funarg (which
is an abbreviation of “functional argument”). In creating the funarg, the free
variable, Y, gets bound to its current value, 5, and that value is “closed into”
the function. When the PLUS is performed, the value of X is 7 but that of Y
is still 5 within the funarg, even though it has changed to 7 in the surrounding
environment. The result of PLUS and of the overall expression is then 12 rather
than 14.

Closure tends to be computationally expensive, and binding of all free vari-
ables at closure time is seldom necessary in practice. It is one solution to the
so-called “funarg problem,” where there may be a conflict between intended bind-
ings of variables in a function definition, and the actual bindings those variables
may get upon evaluation in an unforeseen environment. '

An alternative solution is to allow FUNCTION to take an arbitrary number
of arguments; the first is either the name of a function or a LAMBDA expression,
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and successive arguments are particular free variables in the function specifica-
tion whose values are to be closed into the funarg. Any free variables not listed
are treated as if there were no closure. This method is computationally more
efficient yet allows the programmer to prevent binding conflicts.

2.12 Defining Special Forms

Functions (for user-defined functions) are of two types. Most frequently used are
those of the “EXPR” variety. The other type is the “FEXPR” variety. Functions
of the EXPR type are those having a fixed number of arguments. Functions of the
FEXPR type have no restrictions on the numbers of arguments they can take. In
addition, EXPR’s always have their arguments evaluated as they are called. On
the other hand, FEXPR’s do not necessarily have their arguments evaluated; the
evaluation is controlled in the definition of the FEXPR. In a FEXPR's definition,
only a single formal parameter is given. When the FEXPR is called, all of the
arguments in the call are bound as a list to the formal parameter.

The way to define a FEXPR is dependent upon one’s LISP system. We
use the convention that a special form DEFEXPR similar to DEFUN is used. A
simple example of a FEXPR is the function MYSETQ below, which has behavior
similar to that of the built-in function SETQ.

(DEFEXPR MYSETQ (L) (SET (CAR L) (EVAL (CADR L))))

A call such as (MYSETQ X 5) binds L to the list (X 5) and applies the function
body, setting the value of X to be the result of evaluating 5 (which is 5). Note
that if MYSETQ is called with fewer than two arguments, an error will result.
[f there are more than two arguments, the extra ones are ignored.

A more novel example of a FEXPR is a function we can call SETQ2 which,
ike SETQ, takes two arguments and assigns from right to left. However, where
BETQ automatically quotes its first argument and evaluates the second, SETQ?2
loes the converse. It evaluates the first and quotes the second. Then, for exam-
ple, we could have the following interactive sequence:

(SETQ X ’Y) ; produces value Y

SETQ2 X (CAR Y)) ; produces value (CAR Y)

Y ; produces value (CAR Y) and
(EVAL Y) ; produces value CAR.

In order to define SETQ2, as with MYSETQ, we need control of argument
pvaluation. Therefore, we choose the FEXPR type of function rather than the
hormal EXPR. Our definition is as follows:

(DEFEXPR SETQ2 (L) ; here L represents a list of the arguments.
(COND ((NOT (EQUAL (LENGTH L) 2)) (PRINT ’ (ERROR IN SETQ2)))
(T (SET (EVAL (CAR L))
(CADR L) )) ) )
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Since there is no way for the LISP interpreter to know how many arguments we
- intend SETQ2 to be called with, the first clause of the COND above checks to
make sure the number is 2, causing an error message (which is specific to the
| problem) to print if not. Then, the arguments are accessed from the list L using
I CAR and CADR to pick off the first and second ones, respectively. The first one
 is evaluated as per our requirement. Since the second is not evaluated, we may
i think of it as automatically quoted. The assignment is acually performed by the
general function SET.
: Suppose we wish to define a special form taking any number of numeric
L arguments which computes the average of them. We may do this as follows:

t  (DEFEXPR MEAN (L)
(QUOTIENT
(APPLY (FUNCTION PLUS)
(MAPCAR (FUNCTION EVAL) L) )
(LENGTH L) ) )

i The atom L gets bound to the entire list of unevaluated arguments when MEAN
£ is called. In our case, we want those arguments evaluated. Therefore we use the
| subexpression (MAPCAR (FUNCTION EVAL) L) to give us this list of evalu-
‘ ated arguments (the function MAPCAR is described in the following section of
L this chapter). To get the sum of this list we apply the function PLUS to it. Note
L that the form (PLUS (MAPCAR (FUNCTION EVAL) L)) would produce an
. error since there would be only one argument to PLUS and this would be a list,
not a number. Thus, we APPLY the function PLUS to the list of arguments.
¢ Finally, the length of L is unchanged by evaluating the elements of L, and we
can therefore take LENGTH of L itself. The quotient of the sum and the length
is the average.

2.13 MAPCAR

Sometimes one wants to apply a single function to each of the several elements

in a list. Although one could use a PROG including a loop to iteratively process

first one argument, then the next and so on, LISP provides a special form,

“MAPCAR,” to accomplish this in one fell swoop. For example, the form (ADD1

5) which returns value 6 can be expanded upon with MAPCAR to yield a form
such as

(MAPCAR (FUNCTION ADD1) ’(5 10 7 -2 101))

which returns as its value the list (6 11 8 -1 102). We see here that MAPCAR
requires two arguments: the first is a function description, in this case the ex-
pression (FUNCTION ADD1). The second argument to MAPCAR is a list of
inputs for the function.
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It is often convenient to operate on lists using MAPCAR. The next example
takes a list of words and changes some of them, so that if the input is an English
sentence in the present tense, then the output will be in the past tense. This
example shows how an embedded function definition can be included within a
MAPCAR expression. The embedded definition uses the keyword “LAMBDA.”
The function could have been separately defined and named but was embedded
instead (as a matter of style).

(DEFUN MAKEPAST (PRESENT)
(MAPCAR (FUNCTION (LAMBDA (WORD)
(COND ((EQ WORD ’AM) ’WAS)
((EQ WORD ’ARE) ’WERE)
((EQ WORD ’IS) ’WAS)
(T WORD) ) ))
PRESENT) )

The function MAKEPAST takes a single argument, PRESENT, which is
assumed to be a list of atoms. MAPCAR successively causes each word to be
tested with the embedded function, and the word or a replacement for it is
returned in the output list. Here is an example application of MAKEPAST to a
data list:

(MAKEPAST ’ (MT ST HELENS IS AN ACTIVE VOLCANO))
which yields

(MT ST HELENS WAS AN ACTIVE VOLCANO)

2.14 READ and PRINT

A LISP function may obtain data in several ways: (a) the data may be passed
as one or more arguments, (b) the data may be represented as global values
of properties and accessed within the function by referencing the appropriate
atoms, or (c) the function may accept data directly from the user or from a data
channel connected through the operating system. In order to obtain data this
third way, the function READ (or one of its variations) is used. READ takes
no arguments. When it is called, evaluation is suspended until the user types in
a syntactically valid S-expression at the console. When the input operation is
complete, the value typed in is returned as the value of READ. For example, we
might type

(CONS (READ) ’(TWO THREE))
ONE

and get the result (ONE TWO THREE).

Y
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The results of a computation are commonly printed on the screen because
¥ LISP automatically prints the result of any top-level evaluation. However, any
b Jvailable S-expression can be printed at almost any point within a function using
E PRINT. PRINT takes one argument and prints the value of the argument on a
new line on the screen or printer. For example, (PRINT '(A B (C))) produces
| output (A B (C)) and then returns a value. Consider also:

(MAPCAR (FUNCTION PRINT) ’(AB (C. D))
which produces the output:

g
B
} (C . D)

i‘and then the value of PRINT is returned. In some systems, PRINT always
i returns T. In others, it always returns NIL. In others, the value printed is what
b is returned.

; An important variation of PRINT is PRIN1, which is like PRINT but does
| not go on to a new line.

Additional functions for reading and printing data are system dependent.
However, two are described here which are very useful for interactive experi-
i ments.

: TYI is a function of no arguments which waits for one character to be typed
R at the keyboard (or read from a data channel, in some systems) and returns a
¥ FIXNUM giving the ASCII code for the character typed. This function is useful
.. for building keystroke-driven command interpreters.

TYO is a function which takes a single FIXNUM argument representing an
ASCII character code. TYO causes that character to be “typed out” on the
screen, printer, or data channel. It provides a simple way to get punctuation,
special symbols, and control characters.

Some LISP systems provide functions for opening and manipulating logical
windows on the display screen. One function used later in this book is LOCATE,
invoked as (LOCATE 1 J). This positions the screen’s cursor at row I, column
J, where I and J must evaluate to FIXNUMs.

2.15 The Property List of an Atom

+ FBach literal atom such as MTRAINIER is automatically given a property list by
* the LISP system as soon as the atom is first seen. The property list is a list of
pairs of S-expressions which store information related to the atom. The built-in
function PUTPROP is used to place such a pair on the list. For example, to
associate with MTRAINIER a HEIGHT property of 14410, the following call
could be used:




40 ’ CHAPTER 2. PROGRAMMING IN LISP

(PUTPROP ’MTRAINIER 14410 ’HEIGHT)

The general format of this call is (PUTPROP atom value property-type)3.
Subsequently, the information may be retrieved with the call:

(GET ’MTRAINIER ’HEIGHT)

which returns the value 14410. Any number of pairs may be associated with an
atom. However, giving a new value for a previously stored property type will
overwrite the previous value. Thus, evaluating the form

(PUTPROP ’MTRAINIER 4392 ’HEIGHT)

which gives the height of Mt. Rainier in meters, effectively deletes the old value
stored for the HEIGHT of MTRAINIER. Notice that the order in which the
arguments are given is important. The result of evaluating

(GET ’HEIGHT ’MTRAINIER)

will be NIL, unless additional information is explicitly stored on the property
list of the atom HEIGHT.

2.16 Replacing Pointers in LISP Memory

Normally, when a new list or dotted pair is created by LISP (as the result of
a CONS or LIST form, for example) one or more new cells are allocated and
pointers copied into their left and right halves, in such a way that no previous
cells are altered. Thus if the value of X is the list (A B C) and the form (SETQY
(CONS 'N (CDR X))) is evaluated, Y will receive the value (N B C) without any
change being made to the value of X. On the other hand, there exist functions
that have the effect of rewriting a pointer into a LISP cell, causing an alteration
rather than allocation of new memory. The form (SETQ Y (RPLACA X 'N))
causes the CAR of X to be replaced by a pointer to the atom N, and the value
of Y is this altered version of X. If X is now evaluated, the result is (N B C).

The function RPLACD is similar to RPLACA but causes the CDR. rather
than the CAR to be replaced. Note that circular lists can easily be created
with RPLACA and RPLACD that may cause problems when they are given to
PRINT. For example, (SETQ X (A B C)) creates the list structure shown in
Fig. 2.5. Evaluating the form (RPLACA X X) changes this to the structure
shown in 2.6.

This structure prints as a long sequence of left parentheses, e
until the system stack overflows or the user turns off the computer. In a similar
fashion, the sequence (SETQ X *(A B C)), (RPLACD X X) causes LISP to emit
(AAAAA.. . without ever getting to a closing parenthesis.

3Note that some systems require that the property type be an atom.

Y
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4 b ok

Figure 2.5: List structure created by (SETQ X '(A B C).

n

N EN

Figure 2.6: List structure resulting from (RPLACA X X).

The function (NCONC X Y) applied after (SETQ X ’(A B C)) and (SETQ
L Y ’(D E F)) makes a non-copying concatenation of X and Y. The last pointer in
X (which points to NIL) is replaced by a pointer to the value of Y. The result is
gimilar to that given by (APPEND X Y). However, as a side effect, X has been
altered. The value of Y remains the same.

These functions are not recommended for general or casual use, since they eas-
ily create structures which are unprintable and make debugging difficult. How-
ever, they have some merits. It is possible to construct fairly compact represen-
tations in memory of arbitrary directed graphs, cycles permitted, using them.
Also, since they do not cause new storage to be allocated, they may reduce the
amount of time spent by LISP in garbage collection for some applications.

2.17 Debugging

Errors and oversights seem to be the rule in Al programming, largely because of
. the experimental nature of the field. Although the programming methodology
- ideas discussed elsewhere in this chapter will greatly assist in program devel-
- opment, the need still exists for occasional detailed observation of a program.
~ Tools for examining the progress of a program are useful both in finding errors,
in verifying correctness, and for human understanding.
LISP systems usually provide two kinds of debugging aids: TRACE capability
* for viewing function calls, and BREAK capability for examining the values of
variables at selected breakpoints during the execution. ,
, TRACE is a special form which takes any number of function names as
(unevaluated) arguments. The general format for invoking it is (TRACE Fy
Ry F,,). Tt causes those functions to be marked for automatic “tracing” when-
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ever they are called. For example, (TRACE LENGTH) marks the LENGTH
function, so that each time it is called, the name of the function and the particu-
lar values of the arguments in the call will be displayed. Also, when the function
returns, the returned value is displayed. In some LISP systems, only EXPR’g
can be TRACEd. In others, any function can be traced.

The related form (UNTRACE F; F; -- - F,) turns off trace mode for each E,.
If no arguments are given, all traced functions are made untraced.

Suppose, for example, that we define FACT to compute the factorial of its
argument. An appropriate definition is the following:

(DEFUN FACT (N)
(COND ((ZEROP N) 1)
(T (TIMES N (FACT (SUB1 N)) ))) )

If we cause FACT to be traced, and then invoke it:

(TRACE FACT)
(FACT 3)

we get a display such as the following one:

1 FACT:(3)

2 FACT:(2)
3 FACT: (1)
4 FACT: (0)
4 FACT=1
3 FACT=1

2 FACT=2

1 FACT=6

6

Such a display typically shows not only the function name, argument values
and return value, but also the level of invocation of the function (here shown
both with printed integers and with corresponding indentation). These extra
features make it easy to see the correspondence between an entry to a function
and the value which results.

Using TRACE, one can easily determine whether a particular function is ever
reached, or ever reached with a particular set of arguments. TRACE is easy to
use because no editing and subsequent un-editing of the functions to be traced
are necessary, as they usually are with other debugging methods.

As convenient and useful as it is, TRACE does not provide a means of viewing
the state of a computation at other than function entry and exit. It doesn’t pro-
vide any way to see values of variables not directly connected with the function
call, and it does not provide a way for the programmer to change variable values
interactively during the computation. A function which permits these things to
be done is BREAK. In a typical LISP system, when (BREAK X) is evaluated,
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E  the interpreter stops further evaluation and prints “BREAK:” followed by the
£ result of evaluating X. It then enters a “Read-Eval-Print” loop similar to that at
. top-level. Local variable values can be examined or changed, and functions can
be executed as if at top-level. To continue the evaluation of an expression after
a BREAK, the programmer types a control character or a special atom such as
RESUME.

If a BREAK function is not available in your LISP system, the following
definition gives you one.

'(DEFUN BREAK (8) ;program break utility function
(PROG (BREAKVAL) ;local variable
(PRIN1 ’BREAK) ;print out message
(TYO 58) ;type a colon
(TYO 32) ;type a space
(PRINT S) ;print the argument

(PRINT ’(TYPE RESUME TO CONTINUE))
LOOP (SETQ BREAKVAL (READ)) ;get an S-exp from the user
(COND ((EQ BREAKVAL ’RESUME)
(RETURN NIL))) ;return if it’s RESUME
(PRINT (EVAL BREAKVAL));otherwise evaluate and print it
(GO LOOP) ) ) ;repeat

2.18 Programming Methodology

One tends to be concerned with slightly different issues when writing LISP pro-
grams than when writing payroll programs, or statistical packages. LISP pro-
grams are usually experimental, to test out new ideas, to model something one
might not fully understand. Consequently, getting the program to work, gaining
a better understanding of one’s problem, and ease of development are usually
more important to LISP programmers than speed.

2.18.1 Benefits of Programmiﬁg in LISP

Some of LISP’s strengths are the following;:

~ Modularity: Since a LISP program consists of a set of function definitions,
“and it is very easy to have one function call another, it is also easy to fit a hier-
archy of modules (functions) to the natural structure of a problem or problem-
solving procedure.

Speed of development: LISP requires very few “declarations” of data or data
types, as do languages such as PASCAL. There is time saved in not having to
declare data and in not having to debug consistencies between data declarations
and data usages. On the other hand, the LISP programmer is not prevented
from writing procedures that test data for proper formats. The fact that LISP is
usually interpreted means that the programmer can easily and frequently make
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changes and try them without having to wait for a compiler to translate his
entire program each time. Debugging aids available in LISP allow location of
problems faster than do those for conventional languages. This is because the
debugging tools are integrated into the programming environment, have access
to all symbols and function definitions, and have the full power of LISP available
to them.

Functional Programming: It is relatively easy in LISP to write programs
whose correctness is relatively easy to prove mathematically. A style of pro-
gramming in which no assignments or global properties are manipulated is called
“functional programming.”

2.18.2 Stepwise Refinement

To have an orderly development of a program larger than a couple of pages, the
following suggestions are offered.

Use dummy functions in the beginning stages of coding, as “syntactic scaf-
folding” to verify correct data formats of functions that communicate with the
dummies. The dummies also serve to help verify proper execution order.

Alter only as many things at a time as you can mentally keep in mind at
once. Add roughly one new feature at a time, to make debugging simpler.

Thoroughly test each new feature under a variety of input configurations.

2.18.3 Ways to Keep Complexity Manageable

The potential confusion grows more than linearly with the size of a program.
This is just as true for LISP as for any other language. Here are some tips for
fighting the tendency.

Use simple functions (with good names) to construct and access data objects
of the types you need. For example, if dates are to be represented as lists of
the form (DAY MONTH YEAR), it clarifies programs to have defined special
accessing functions:

(DEFUN DAY (DATE) (CAR DATE))
(DEFUN MONTH (DATE) (CADR DATE))
(DEFUN YEAR (DATE) (CADDR DATE))

Keep function definitions from getting too big. For most functions, a screen-
ful is a good limit. The programmer’s eye can then take in the entire function
definition at once. If needed, create helping functions. This also helps to keep
parenthesis balancing easy, and reduces the need for a large number of “inden-
tation levels” for neatly formatting function definitions.

Use a formatting scheme in the source file that clarifies the structure of each
expression. A convention used in formatting the LISP expressions in this book
is that in a sequence of closing (right) parentheses, there is a space between
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f.two right parentheses if the two left parentheses that they correspond to lie on
| separate lines. This makes it easier to see the right-to-left correspondences.
Comment the function definitions.

2.18.4 Pragmatics

B Here are some general edicts of good programming practice:

4 Keep backups of your files and document them. Since they tend to be ex-
perimental, you may have more versions of your LISP programs around than
~ one usually would have with programs in other languages. A backup should be
B nade at the end of a day’s work, after a bug has been completely eliminated,
E . or after a certain amount of work. Usually, software backups suffice (e.g., extra
' ; disk files). But when in danger of magnetic media erasure, etc., an occasional
. paper printout is wise.

Al is almost by definition a field in which people try to automate intellectual
tasks that are more and more difficult. When you bite off more than you can
chew, spit it out and start over. That is, back off from your original ambitious
plans when necessary.

2.19 Implementation of LISP

2.19.1 Representations of Literal Atoms, Numbers and
CONS Cells

LISP interpreters generally consist of a memory management unit, a collection
of core functions usually implemented in a low-level language for speed, and a
library of functions that augment the core functions. Such functions may be
“written in LISP themselves. The core functions generally must include READ,
EVAL, APPLY and PRINT or variants of them. Also CONS, CAR, CDR, SET,
and DEFUN are core, as are NULL, ATOM, and various arithmetic functions
and predicates. COND and PROG are core. The core functions form a basic
group in terms of which the library functions can be implemented.

Memory is usually organized into cells, although some implementations pro-
. vide a number of memory areas including non-cellular ones. The cells initially
. form a large pool of available storage. They are chained together into a long
list called the freelist. Cells are taken off the freelist as needed to build atoms,
build lists, etc. Literal atoms may require several cells to hold their definitions.
Typically a cell consists of two or three machine words of memory. Small inter-
preters on microcomputers may use 4 bytes per cell, while larger lisp systems
might use more than 8 bytes (64 bits) per cell. Each cell must be capable of
being addressed by a pointer that fits in half a cell. This is because a “CONS
cell” or cell representing a dotted pair, must store pointers to two other cells,
one representing the CAR and one representing the CDR.
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2.19.2 Garbage Collection

As evaluation in a LISP environment proceeds, cells are continually taken off
the freelist to make the list structure to represent results of function evaluations,
Many of these results are temporary and of no use after a brief moment. If there
were no way of reclaiming the space taken up by these old values, only LISP
programs making very light use of memory could run before the freelist would
be exhausted and all evaluation terminated. Thus, practically all LISP systems
have a “garbage collector” facility which causes the cells no longer in active use
to be identified and linked back into the freelist for reallocation.

The simplest kind of garbage collector uses a “mark and sweep” procedure.
Whenever the freelist becomes exhausted, evaluation is temporarily suspended.
Then the garbage collector begins its work by marking all literal atoms and the
cells accessible from them through their values and their property lists. Then all
temporary cells (in use by the evaluator) and their values are marked. All bind-
ings of literal atoms must be marked (not just current local bindings). Marking
a CONS cell usually consists of the following: (1) checking to see if it is already
marked and passing it by if so, (2) setting a special bit in the cell (the mark bit)
to 1, (3) recursively marking the cell pointed to be the CAR pointer in the cell,
and (4) similarly marking the CDR cell. After the marking stage is complete, a
sweep is begun by starting at (say) the high end of cell memory space and exam-
ining the mark bit in each cell. Each cell not marked is assumed to be garbage,
and it is linked into the freelist. Each marked cell is assumed to be potentially
useful and is not changed (except that the mark bit is cleared in anticipation of
the next garbage collection).

A variation on the mark and sweep algorithm is to perform “compaction”
during the sweep phase. With this scheme the sweep is performed starting with
two pointers: one at the high end of cell memory and the other at the low
end. The pointer at the low end is advanced to locate a vacant (unmarked)
cell. Then the pointer at the top is moved down to find a marked cell. The
contents of the marked cell are moved to the vacant cell in low memory, and a
“forwarding address” is stored in place of the information that was just copied
down. The process continues until the pointers meet somewhere in the middle of
cell memory. Then all references to marked cells in the higher part of memory are
updated by replacing the referencing pointers by the forwarding addresses left
at each marked upper-part cell. Finally, all upper-part cells are joined to form
the new freelist. The main advantage of compacting is that it becomes easier
to allocate large-sized blocks of memory in LISP systems which can make use
of larger blocks. Another advantage may accrue in LISP systems having disk-
based virtual memory. By moving values of relatively permanent importance to
resident areas of memory (or by moving them close together), the frequency of
page faults may sometimes be reduced.

If the memory space is very large (as it often is on LISP machines using
disk-based virtual memory), a mark-and-sweep garbage collection might take
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I ceveral minutes, causing an annoying interruption to the user. In response to
F {his problem, designers of LISP machines have developed “incremental” garbage
E collection algorithms that perform a little bit of the work of recycling memory
[ every time memory is allocated, rather than waiting to do it all at once. The
b result of this is slightly slower execution 95% of the time, but no long waits
L occurring as a result of a sudden need for a little memory to be allocated. The
¥ incremental algorithms are considerably more complicated than non-incremental
£ ones.

k. Some LISP systems save some memory by storing lists in chunks bigger than
E CONS cells, when possible. For example, if a list of 7 elements is to be created,
£ and a block of 5 contiguous half-cells (pointer containers) is available, a spare
b bit in each half-cell is used to indicate whether the next half-cell contains the
| pointer to the CDR (conventional) or it contains (a pointer to) the next element
on the list. This technique is known as “CDR-coding” and can save almost 50%
§ of memory when many long lists are represented with large blocks of memory.

2.20 Bibliographical Information

LISP was invented by McCarthy [McCarthy 1960], and it was based in part on the
lambda calculus [Church 1941]. A clear introduction to the lambda calculus may
be found in [Wegner 1968]. An early collection of application-oriented discussions
of LISP is [Berkeley 1964]. Primers devoted to LISP are: [Weissman 1967], and
[Friedman 1974] (both of these concentrate on basic aspects of the language
" which can be learned without experience on a computer). More advanced books
on LISP (in order of increasing sophistication) are: [Siklossy 1976], [Winston
and Horn 1981}, [Charniak et al 1979] and [Allen 1978] (which deals in depth
with the theory and implementation of LISP).

The methodology of structured programming in LISP was explained well
in [Sandewall 1978]. Techniques of functional programming are presented in
[Henderson 1980] (which also includes guidelines for implementing parts of LISP).
. Since 1980 there has been a biennial conference sponsored by the Association
% for Computing Machinery on LISP and applicative programming. Research pa-
" pers about new developments in LISP can be found in the proceedings of those
' conferences.
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Exercises

1. Which of the following are LISP atoms?
ATOM 17 5
0) () NIL
(A . B) T 4A

2. Convert the following S-expressions into list notation (insofar as it may

be possible):

(A . (B . (C . NIL)))
X . ((Y . Z) . NIL))
((A . B) . (C.D))
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3. Convert the following S-expressions into dot notation:

0]
((B)
(@IW)

. Describe the values of the following expressions:

(ADD1 (TIMES 4 5))

(CAR (QUOTE (A LIST)))

(CAR (A LIST))

(CDR ’ (A LIST))

(CONS ’TO ’(BE OR NOT TO BE))

(CONS (CDR ’(CATS . DOGS)) (CAR ’(BEARS . LIONS)))
(COND (NIL 1)(T 2)(NIL 3)(T 4))

_ For the function COUNTSUBLISTS defined on page 29 determine how
many recursive calls are made in order to evaluate the following expression:

(COUNTSUBLISTS ’(A (B) (C (D))))

What is the argument to COUNTSUBLISTS in each case?

_ Write a recursive function EXIFY which takes any S-expression and con-
verts it to a new one in which all atoms other than NIL have been replaced
by X. Thus (EXIFY (A (B.C) X Y NIL 7)) should produce (X (X . X)
X X NIL X).

_ Write a recursive function REPLACE which takes three S-expressions (call
them S1, S2 and S3). It replaces S2 by S3 wherever it occurs in S1. Use
EQUAL to test for occurrences of S2 in S1. For example,

(REPLACE °’ ((THIS 1) CONTAINS (2 OCCURRENCES (THIS 1)))
' (THIS 1)
' (THAT ONE))

should yield the value

((THAT ONE) CONTAINS (2 OCCURRENCES (THAT ONE))).

. Using a recursive approach, write a function which prints the first fifteen
cubes (1, 8, 27, 64, ..., 3375). Now write a non-recursive version, using

PROG. Compare the lengths of the two definitions by counting the number
of atom occurrences in each.

9. What is the result of evaluating the following?




10.

11.
12.

13.

14.

15.

16.

17.
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(SETQ X ’(EVAL ’(SETQ X ’EVAL)))

What would be the value if the first quote mark were omitted?

Suppose an atom ILIST is bound to a list of integers such as 371
13) and a function is needed which returns the sum of all the elements
of ILIST; that is, a function SUM is desired such that in our case (SUM
ILIST) = 34. Use APPLY to define such a summation function.

Explain the difference between an EXPR and a FEXPR.

Define a LISP function (PALLINDROMEP LST) which returns T if and
only if LST is a pallindrome; that is, if LST is the same after its top level
elements have been put into reverse order.

Assume that (REVERSE L) takes a list L and reverses its top-level ele-
ments; for example (REVERSE ’(A B (C D) E) produces the value (E(C
D) B A). What is the value produced by the expression below?

(MAPCAR (FUNCTION REVERSE) ’((A B) (C (D E)) (F ¢)))

Use MAPCAR to write a function that takes a list and creates a new
list whose elements are lists obtained by repeating original elements. For
example, if the old list was (X Y (Z W)) then the new list would be (X
X) (YY) ((Z W)(Z W))).

Define a function (EQUALELTS LST) which returns T if and only if all
the top-level elements of LST are EQUAL to each other.

The list ((A B)(C D)(E F)) represents a “quasi-balanced” tree in the sense
that:
¢ all top-level sublists have the same length,

¢ all top-level sublists have the same depth (depth is the maximum
path length from the root to a leaf node), and

¢ each sublist is also quasi-balanced.
Write a function (QUASI_BALANCEDP LST) which returns T if and

only if LST represents a quasi-balanced tree. You may use the function
EQUALELTS of the previous problem.

A function may be recursive even though it does not contain a direct call

to itself. Consider the tree structure of Fig. 2.7 and its representation as
the list:

(3 (28))(7 (3 1))

A
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2 5 2 1

Figure 2.7: A tree for manipulation by indirectly recursive functions.

Suppose we want to compute a value at the root which is the mazimum
value for its two children, where each of those values is the minimum
of its two children’s, etc., alternating maximization and minimization at
each level of the tree. Write definitions for two functions TREEMAX and
TREEMIN that call each other to come up with the desired value. Your
function should be able to handle binary trees of any depth. Note that
the correct value for the example illustrated is 3. That is, (TREEMAX
'((3 (2 5))(7 (2 1)))) should yield 3. Test your function on the example
above and on the following two:

(((1 23 4))((5 (6 7)) 8))
(1 (8 (2 (7 (3 (6 (45)))))N

This method of processing trees is developed further in Chapter 5 in con-
nection with automatic game-playing programs.

Using the function MAKEPAST (described on page 38) as an example,
write a function MAKEOPPOSITES which replaces some common words
by their opposites.

Write and debug a LISP function “NEXT” which finds the next element
in a sequence. The sequence is assumed to be a list of FIXNUMs. NEXT
should perform correctly on arithmetic and geometric progressions, and it
should give up gracefully on others. For example

e (NEXT’(2468)) =10

o (NEXT (4 —12 36 —108)) = 324

e (NEXT (314 1)) = UNKNOWN

Show the results your function gives on these examples and on five other
diverse examples of your own fabrication.
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Describe how property lists could be used in order to represent the infor-
mation that daffodils are yellow and belong to a group of plants called
bulbs. What is then necessary to retrieve this information?

Suppose that an arithmetic expression is any functional form using only
PLUS and TIMES as functions, and using only constant numbers, vari-
ables (literal atoms), and (nested) arithmetic expressions as arguments.
An example is the following:

(PLUS X 3 5§ (TIMES (TIMES X Y Z) 0))

Write a function SIMPLIFY which takes an arithmetic expression and re-
turns a new one in which the following improvements are made, if they
are possible: (a) any subexpression consisting of the function TIMES fol-
lowed by a list of arguments, one of which is 0, is replaced by 0; (b)
any occurrence of 1 as an argument to TIMES is eliminated, and then, if
possible, the occurrence of TIMES is eliminated, leaving only the other
factor at that level; and (c) any occurrence of 0 as an argument to PLUS
is eliminated, and if only one argument remains, the occurrence of PLUS
is eliminated. If SIMPLIFY were run on the arithmetic expression above,
it should give the expression:

(PLUS X 3 5)



Chapter 3

,Production Systems and
| Pattern Matching

' 3.1 Overview

E In this chapter we further develop LISP programming methodology, and at the
l same time, we examine conceptual tools for designing Al systems. The previous
¥ chapter presented the main features and functions of LISP. However, in order to
[ solve interesting problems, we need to be able to write LISP programs that are
. more complicated than those of Chapter 2. This chapter begins by describing
. “production systems,” which provide a scheme for structuring Al programs. We
- then develop several LISP examples to illustrate the implementation of produc-
tion systems. Next, pattern-matching techniques are presented and illustrated
n LISP. In order to show how these ideas can be used in larger programs, we
. then apply both production systems and pattern matching in each of two simple
AT systems: “SHRINK,” a conversational simulator for a Rogerian psychiatrist,
and “LEIBNIZ.” a program which performs symbolic differentiation and simpli-
- fication of mathematical formulas. The chapter closes with an introduction to
" unification, a pattern-matching technique for logical reasoning that is developed
- further in Chapter 6.

3.2 Production System Methodology
3.2.1 Modularity Revisited

As was mentioned in the previous chapter, LISP programs should be built up
out of relatively small and understandable parts (modules). This necessity for
simplicity and clarity becomes a challenging problem as the size of a program
grows. One way to combat the problem is to adopt a simple structure for the
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control scheme
("interpreter")

1T

condition action

. . database
progﬁigoc;lf condition action of
rules . . <:|> state
("rule base") ° ° information

condition action

Figure 3.1: The structure of a production system.

entire program, called a “production system.” A production system consists
of a collection of condition-action pairs called production rules, together with
a database of “state information” and a procedure for invoking the production
rules. The overall structure of a production system is shown in Fig. 3.1.

Each production rule is much like a clause in a COND form. It contains a
condition which must be satisfied before the action part is performed. In fact,
we will often implement our production rules as actual COND clauses. The
database of state information is just a collection of information tested and acted
upon by the production rules. In LISP the database may consist of a list of
variables (atoms), their values and their properties. The invoking procedure is
pften just a program loop which repeatedly tests the conditions of production
rules and executes their actions when satisfied.

A simple example of a production system is now described. The job accom-
plished by the system is to take an integer z and produce its Roman numeral
representation.

1. Production Rules:

(a) If z is null then prompt the user and read z.

(b) If z is not null and is bigger than 39 then print “too big” and make
z null.

(c) If  is not null and is between 10 and 39 then print “X” and reduce
z by 10. '

Y
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(d) If « is not null and is equal to 9 then print “IX” and reduce z to 0.

(e) If z is not null and is between 5 and 8 then print “V” and reduce
by 5.

(f) If z is not null and is equal to 4 then print “IV” and reduce z to 0.

(g) If z is not null and is between 1 and 3 then print “T” and reduce x
by 1.

(h) If z is not null and is equal to 0 then print an end-of-line and make
z null.

9. Database: The value of the sole variable z.

3. Control scheme: Test conditions in an arbitrary order until one is true;
execute corresponding action; repeat indefinitely.

The control scheme here works by having an interpreter scan through a list
of the production rules. The rules may be in the order given, or any other order.
The condition part of each rule is tested in turn, until one of the conditions is
found to be true. When one is true, we say that the production rule “fires”
or “triggers.” Then, the action for that rule is executed by the interpreting
procedure. For example, if z has the value 7, then production rule e above
would fire, causing the action

print “V” and reduce x by 5

to be performed. After the action is taken, the interpreting procedure starts test-
ing production rule conditions once again. This process is repeated indefinitely
(i.e., forever or until the interpreter is turned off).
; An alternative to the indefinite repetition scheme could be to repeat until
either no conditions are true any more or an action is taken which explicitly
. halts the interpreter. However, the particular set of production rules might not
 allow halting anyway.
The program ROMANT1 is a straightforward (though not the most efficient)
implementation of this production system. Here is the LISP program ROMANI1:

; ROMAN1.LSP - unordered production system to
;convert to Roman numerals.

(DEFUN ROMAN1 ()
(PROG (X)

LOOP

(COND
((NULL X) (PRINTM ENTER NUMBER) (SETQ X (READ)))
((AND (NOT (NULL X)) (GREATERP X 39))
(PRINTM TOO BIG) (SETQ X NIL))
((AND (NOT (NULL X)) (LESSP X 40) (GREATERP X 9))
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(PRIN1 ’X) (SETQ X (DIFFERENCE X 10)) )
((AND (NOT (NULL X)) (EQUAL X 9))
(PRIN1 'IX) (SETQ X 0) )
((AND (NOT (NULL X)) (LESSP X 9) (GREATERP X 4))
(PRIN1 ’V) (SETQ X (DIFFERENCE X 5)) )
((AND (NOT (NULL X)) (EQUAL X 4))
(PRIN1 ’IV) (SETQ X 0) )
- ((AND (NOT (NULL X)) (LESSP X 4) (GREATERP X 0))
(PRIN1 ’I) (SETQ X (SUB1 X)) )
((ZEROP X) (SETQ X NIL) (TERPRI))
)
(GO LOOP) ) )

Thus ROMANTI is defined as a function of no arguments (it gets its inputs
through the action of one of the production rules - rule a). The body of RO-
MANTI consists of a PROG form, which allows the repetition of the control
s.heme to be easily implemented as a loop. There is a single local variable, X,
for the PROG, and it is used to hold all the state information for this simple
production system. The portion of the procedure for testing conditions and ex-
ecuting actions is implemented in ROMANT1 as a COND form. Each production
rule is represented as one of the clauses of the COND form. (There are other
ways to represent production rules in LISP; one alternative is used near the end
of this chapter in the LEIBNIZ program). The production rules are examined
in a fixed order here: the order in which they appear in the COND form. The
repetition loop is completed by the form (GO LOOP).

3.2.2 Ordered Production Systems

The often-repeated test for X being not null is a symptom of LISP’s need
for arguments of the numeric type for its numeric predicates like LESSP and
GREATERP. As we shall shortly see, the imposition of a planned ordering on
bhe production rules can greatly reduce the redundancy of testing for such sub-
bonditions as whether or not a value is null, atomic, of a certain length, numeric,
ptc. The placing of the ordering on the production rules is no inconvenience in
ISP, since the testing of conditions of production rules cannot be run in parallel
without unusual hardware and nonstandard extentions to LISP.

ROMAN?2 is a solution to the Roman numeral problem which uses a planned
brdering in the production rules to streamline the condition-testing process. RO-
MAN?2 appears to be a better solution than ROMAN1. Now, in ROMANZ2, only
he first rule need test for X being null. If X is null, execution does not reach
he production rules that follow, during this particular iteration of the PROG.

ROMAN2.LSP - ordered production system to
convert to Roman numerals.




t 3.2. PRODUCTION SYSTEM METHODOLOGY 57

}  (DEFUN ROMAN2 ()
. (PROG(X)
LOOP
(COND
((NULL X) (PRINTM ENTER NUMBER) (SETQ X (READ)))
((GREATERP X 39) (PRINTM TOO BIG) (SETQ X NIL))
((GREATERP X 9) (PRIN1 ’X) (SETQ X (DIFFERENCE X 10)) )
((EQUAL X 9) (PRIN1 ’IX) (SETQ X 0) )
((GREATERP X 4) (PRIN1 ’V) (SETQ X (DIFFERENCE X 5)) )
((EQUAL X 4) (PRIN1 ’IV) (SETQ X 0) )
((GREATERP X 0)(PRIN1 ’I) (SETQ X (SUB1 X)) )
((ZEROP X) (SETQ X NIL) (TERPRI))
)
(G0 LOOP) ) )

3.2.3 Limitations of Linear Production Systems

Any program can be reexpressed as some kind of production system, although
perhaps in only a trival way. For example, if we have a LISP function
(BLACK_BOX X) that does something arbitrary, we can rewrite it in the pro-
duction rule:

If true then compute (BLACK_BOX X).

This would seem to indicate that production systems per se do not buy us
anything special. But, like “structured programming,” the production system,
- when used appropriately, can be helpful in structuring large systems.
, A problem with production systems, as we have presented them in examples
ROMAN1 and ROMAN2, is that the selection of the rule to apply is done by
making, in effect, a linear search through the list of productions each time one is
needed. The amount of time spent testing each condition varies with the com-
plexity of the condition and, in the case of a conjunction of subconditions, with
~the likelihood that the AND can be aborted early by a subcondition evaluating
- to NIL.

3.2.4 Discrimination Nets

It is well known that linear searching is usually slower than some sort of tree
search. By making the subconditions select a path through a search tree that is
balanced or nearly balanced, a lot of unnecessary computation can be avoided.
To this end, builders of big production systems have employed “discrimination
nets” of conditions to select production rules. The structure of such a net is like
that of a decision tree, where the actions are all located at the leaf nodes.

We can reformulate our Roman-numeral conversion program as a discrimi-
nation net as shown in Fig. 3.2.
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g0 et yser Feduco X by 10
print "IX* and
=null{X print "V* and
X<9 == O  reduce Xby 5
print "IV* and
set Xto 0
print "I" and

x>0 reduce X by 1

print an end-
of-line and set
XtoNIL

Figure 3.2: A discrimination net for the Roman Numerals problem.

This discrimination net reduces the maximum number of subcondition tests
required from the eight of ROMAN2 to five in the process of determining the
production rule which fires next. A program implementing this discrimination
net is ROMANS, and is shown in Fig. 3.3.

In using a discrimination net, we have reduced the redundancy of condition
testing in our program. However, we have also lost some of the simplicity and
modularity of the original production system. It is now a more complicated
matter to add or delete a production rule from the program, because we have
many nested COND’s to keep balanced, and the placement of each clause bears
heavily on the semantics of the program. By contrast, in our original system
(ROMANT) the adding or deletion of a rule could be done with relative ease.

Researchers have looked into ways to obtain both the modularity of pure
production systems and the efficiency of discrimination networks. One solution
is “compiled production systems” for which production rules are written in such a
way that a compiling program can automatically transform them into an efficient
program such as a discrimination net.

We shall be concerned less with efficiency than with making things work, and
we will usually express production systems in the clearer “uncompiled” form.

3.3 Pattern Matching

3.3.1 Pattern Matching in Production Rules

As we shall see later in various examples, a good way to specify a condition in
a production rule is by providing a pattern which the input should match if the
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. ROMAN3.LSP -- discrimination net implementation

(DEFUN ROMAN3 ()
(PROG (X)
L0oop
(COND
; 1st decision node:
((NULL X) (PRINTM ENTER NUMBER) (SETQ X (READ)))
(T
(COND
; 2nd decision node:
((GREATERP X 39) (PRINTM TOO BIG) (SETQ X NIL))
(T (COND
; 3rd decision node:
((GREATERP X 4)
(COND
; level 4, first node:
((GREATERP X 9)
(PRIN1 ’X)(SETQ X (DIFFERENCE X 10)))
(T (COND
; level 5, first node:
((EQUAL X 9
(PRIN1 ’IX)
(SETQ X 0) )
(T
(PRIN1 °V)
(SETQ X (DIFFERENCE X 5)) ) )) ))

(T (COND

; level 4, second node:

((EQUAL X 4) (PRIN1 ’1IV) (SETQ X 0))

(T (COND
; level 5, second node:
((GREATERP X 0)
(PRIN1 ’I)
(SETQ X (SUBL X)) )
(T (TERPRI) (SETQ X NIL))

YN N
(G0 LOOP)) )

Figure 3.3: ROMAN3: An implementation of a discrimination net.
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condition is to be satisfied. Such a pattern may be a very particular one such
as NIL which only matches the input NIL or a general one such as ((* X) YES
(* Y)) which matches any (finite) list containing the atom YES as a top-leve]
element. We assume here that (* X) and (* Y) each match arbitrary sublists.
The act of matching is a comparison of a pattern S-expression with a subject
S-expression to find whether the subject has the form or elements required by
the pattern.

We will soon introduce a particular pattern-matching function MATCH which
has enough “power” to act as the basis for two interesting programs that we
describe later in this chapter. In order to test two S-expressions for similar
structure there are many possibilities. Some of these are demonstrated by the
functions MATCH1 through MATCHS.

3.3.2 The MATCH Function

The function (MATCHI P S) defined below is too strict for our purposes and is
no better than EQUAL since it is EQUAL!

(DEFUN MATCH1 (P S) (EQUAL P s))

However, it should be clear that testing for equality is a form of matching, but
that we usually need more general capabilities for matching.

The next matcher, MATCH2, returns T if the list structures, disregarding
atom equality, of P and S are the same.

(DEFUN MATCH2 (P S)
(CoND
((ATOM P) (ATOM S))
((ATOM S) NIL)
((MATCH2 (CAR P) (CAR S))
(MATCH2 (CDR P) (CDR S)) )

(T NIL) ) )
Thus
(MATCH2 ° (A (B) C) (X (V) NIL) ; yields T, but
(MATCH2 > (A (B) C) (A B C)) ; yields NIL.

This is an interesting notion of matching but is still not very useful.

Rather than concern ourselves with isomorphism of list structures (which
MATCH2 essentially does) we shall assume that top-level structure is the im-
portant part, and that a greater degree of control is wanted in the matching of
pattern elements to subject elements at this level. We shall permit control of
matching at this level through the following mechanisms: equality, “variable”
constructs to match any element, match any sequence of elements, and match
any element satisfying a predicate. This assumption that top-level structure is




t 3.3. PATTERN MATCHING 61

the only important one for matching is a powerful one, and it allows us to spec-
ify simple patterns that can match fairly complicated expressions, yet give the
L degree of control desired.

1 We first present a simple matcher which is capable of matching by equality
¢ and by a match-any-element construct in the pattern.

(DEFUN MATCH3 (P 8)

(COND
((NULL P) (NULL S)) ;null clause
((OR (ATOM P) (ATOM S)) NIL) ;atom clause
((EQUAL (CAR P) (CAR S)) ;equal CAR clause

(MATCH3 (CDR P) (CDR S)) )
;joker clause...

((EQ (CAR P) °?) (MATCH3 (CDR P) (CDR S)) )
(T NIL) ) ) ;extremal clause

| The “joker” clause provides a “match-any-element” feature. When a question
. mark appears in the pattern, it matches whatever element occurs at the same
~ position in the subject.

Thus MATCH3 says P matches S under the following conditions: (a) they
-~ are both null; (b) the CAR of P equals the CAR of S and their CDR’s match
' (recursively); (c) the CAR of P is a question mark and the CDR’s of P and
S match recursively. Note: the atom clause rules out the possibility of any
matching if P is not null and either P or S is an atom. This clause also “protects”
successive clauses from the possibility of crash due to taking the CAR or CDR
of an atom. Finally, the extremal clause declares that P and S do not match if
none of the previous conditions holds. For example,

(MATCH3 (A B ?D) (ABCD)) ; yields T, but

(MATCH3 (A BCD) (A B 7 D)) ; results in NIL. Also,
(MATCH3 ’A ’A) ; gives NIL but

(MATCH3 ’((A)) *((A))) ; yields T.

An improvement in MATCH3 would be the addition of a facility to remember
the element(s) matched by the question marks in the pattern. We can provide
such a capability. This would permit, for example, the form

 (MATCH4 ’((? X) BC (? Y)) *(A B C D))

to not only return T, but have the side effects of setting the value of X to be
A and setting the value of Y to be D. In that way, if the match is used as
a condition in a production rule, the action part of the rule can manipulate
the values matching the variable elements in the pattern. To change MATCH3
into MATCH4, we replace only one clause of the COND: the joker clause. The
replacement for the joker clause is:
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((AND
(EQUAL (LENGTH (CAR P)) 2) ; subcondition a
(EQ (CAAR P) ’7) ; subcondition b
(MATCH4 (CDR P) (CDR S)) ) ; subcondition c

(SET (CADAR P) (CAR 8))

T)

Now, when the three subconditions are satisfied, the variable associated with
the question mark in the pattern can receive a value equal to the first element
of S. The three conditions are: (a) the first element of P must be a (sub)list of
length 2 — this prevents a possible error later in computing the CAAR of P; (b)
the first element of that sublist must be the question mark; and (c) the CDR of
P must match the CDR of S. The use of the AND form here is an example of
using “logic” forms to effect control structures. The outcome of the AND form
here controls whether the SET form is evaluated (since the whole expression
here is a clause of the big COND). At the same time, the AND plays the role of
several nested COND forms in the sense that only if subcondition @ is not NIL
will there be an evaluation of subcondition b; and only if both subconditions a
and b are not NIL will there be an evaluation of subcondition ¢. MATCHA4 looks
as follows:

(DEFUN MATCH4 (P S)

(COND ((NULL P) (NULL S)) ;null clause
((OR (ATOM P) (ATOM S)) NIL) ;atom clause
((EQUAL (CAR P) (CAR S)) ;equal CAR clause

(MATCH3 (CDR P) (CDR S)) )
;ynevw joker clause...

((AND
(EQUAL (LENGTH (CAR P) 2)) ;subcondition a
(EQ (CAAR P) °7) ;subcondition b

(MATCH4 (CDR P) (CDR S)) ) ;subcondition ¢
(SET (CADAR P) (CAR 8))
T)
(T NIL) ) ) ;extremal clause

We still want two more features for our MATCH function. The first of these
permits pattern elements similar to “(? X)” but gives us a finer degree of con-
trol over what it matches. The question-mark construct matches any element
appearing in the appropriate position in S. By specifying the name of a predicate
(the name must not be “?” or “*”, which are reserved) in place of the question
mark, we may indicate a class of elements that can match. For example, we
would like

(MATCH5 ’(A B (NUMBERP X) D) (A B C D))
to yield NIL, but for
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(MATCHS ’(A B (NUMBERP X) D) ’(A B 17 D))

L to give T, with the side effect of having the value of X set to be 17.

To obtain this feature, we add another clause to the COND of MATCH(4,
i very much like the new clause in MATCH4. The difference is that instead of
j the second subcondition (labelled b above) (EQ (CAAR P) '?), we have the two
i subconditions:

(NULL (EQ (CAAR P) ’7)) ; subcondition bi

(APPLY (CAR P) (LIST (CAR S))) ; subcondition b2

k. making a total of four subconditions in the new AND form. The new clause is as
E follows, and it is added to the COND form of MATCH4, rather than replacing
| a clause.

((AND
(EQUAL (LENGTH (CAR P) 2)) ; subcondition a
(NULL (EQ (CAAR P) ’7)) ; subcondition bl
(APPLY (CAR P) (LIST (CAR S))) ; subcondition b2
(MATCH4 (CDR P) (CDR S)) ) ; subcondition ¢

(SET (CADAR P) (CAR S))

T)

i Thus, a pattern element of the form (P X), where P is a predicate, matches
E an element S of the subject if P applied to S is T. When the entire match is suc-
i cessful, the value of S is assigned to X. Since MATCHS is identical to MATCH4
- _except for the addition of this new clause, a complete listing for MATCHS is
£ not given. The function MATCHS, for which a complete listing is given below,
¢ includes the clause just discussed.

: Our final feature is a new pattern construct to match any sequence of elements
of S. We write this form (* X), and we call it a wild sequence construct. Unlike
(? X) which matches one element of S and assigns it to X, the element (* X) may
match zero or more elements of S and assigns a list of the matched elements to
X. This feature makes the matching more powerful, although at the same time
reducing the speed of matching. Once again, we are concerned now more with
functionality than with efficiency.

The wild sequence construct is implemented by adding an additional clause
to the COND of MATCH5. This clause is itself a COND with three clauses
handling the various subcases. The new matching function is MATCHS, and is
described in Fig. 3.4.

How the “*” construct works is as follows: subcase 1 allows the construct
to match exactly one element of S, as if the construct were the “?” construct.
Subcase 2 handles the situation in which the * construct should match zero
elements of S, and so the overall match depends upon whether the (CDR P)
matches S. Finally, subcase 3 takes care of the case when the * construct should
match more than one element of S; it permits this by “eating up” one element of



; MATCH6.LSP -- a recursive pattern-matching function
; for use in production-systems programming.

(DEFUN MATCH6 (P S)

(COND
((NULL P) (NULL 8)) ;case with both P and S null
;from here on we can assume P is not null.
((ATOM (CAR P)) ;case when CAR P is an atom
(AND S ;S must not be null.

(EQUAL (CAR P) (CAR 8))
(MATCH6 (CDR P) (CDR 8)) ) )
;from here on CAR of P is non atomic.

((AND ;case when P starts with ? form.

S ;S must not be null.

(EQ (CAAR P) ’7) )
(COND ((MATCH6 (CDR P)(CDR S)) ; rest much match, too.

(SET (CADAR P) (CAR S))
T)
(T NIL) ) )

((EQ (CAAR P) ’x) ;case when P starts with * form.
(COND

((AND S (MATCH6 (CDR P)(CDR S))) ;subcase 1
(SET (CADAR P) (LIST (CAR S T

((MATCH6 (CDR P) S) ;subcase 2
(SET (CADAR P) NIL) T)
((AND S (MATCH6 P (CDR S))) ;subcase 3
(SET (CADAR P) (CONS (CAR S)(EVAL (CADAR P)))) T)
(T NIL) ) )
((AND ;case when P starts with predicate form.
S ;S must not be null.

(APPLY (CAAR P) (LIST (CAR S)))
(MATCH6 (CDR P) (CDR S)) )
(SET (CADAR P)(CAR S)) T)

(T NIL) ) )

Figure 3.4: The definition for pattern-matching function MATCHS.
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. S (that is, calling recursively on its CDR), while not eating up the * construct
jtself, which is implemented by calling recursively with P rather than (CDR P).
3 MATCHS is an implementation for a pattern matcher that is very much

"in the production-system style. The different cases for matching are handled
' independently. As aresult, it is easy to add new pattern-matching features, while
at the same time, there is some inefficiency, because the same subconditions
may be tested repeatedly. It would not be difficult to rewrite MATCH6 as a
discrimination net.

From this point on, we shall use the name MATCH to refer to the function
defined in MATCH6 (one must imagine all occurrences of “MATCH6” as being
replaced by “MATCH” in the definition).

The example use of MATCH below produces the value T:

(MATCH ’((* X) WILD (7 Y) (* Z))
»(*+ SPECIFIES A WILD CARD SEQUENCE ELEMENT) )

Here (* X) matches and assigns to X everything up to WILD, and (? Y)
matches and assigns to Y the atom CARD which follows WILD in the subject,
and (* Z) matches and assigns to Z the rest of the subject.}

3.4 The “SHRINK?”

We are now ready to describe a LISP program which simulates a Rogerian
psychiatrist2. The simulation is crude, but illustrates well how the MATCH
function can be put to good use. The program tries to make constructive com-
ments in response to the patient’s (the user’s) input, to encourage him or her to
reveal all inner conflicts and possible sources of frustration.

A session with the psychiatrist is started by typing

(SHRINK)

after the program has been loaded into LISP. Then the patient follows the doc-
tor’s instructions. The program enters an endless loop which repeatedly reads
in a sentence and makes a response. It makes its response by trying to match
patterns to the input. When a match is found, the corresponding scheme is used
to construct a response. When no match is found, the DOCTOR “punts,” and
responds with a general remark such as “THATS VERY INTERESTING.”

11t should be noted that MATCH treats the variables X, Y and Z as global variable. It
is possible to write a matching function that passes the bindings of the matched fragments
back in a list returned by the matching function to avoid the potential name conflicts that
can arise with the use of globals.

2SHRINK is inspired by the ELIZA program of J. Weizenbaum.
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3.4.1 Implementation of SHRINK

As in ROMANZ2, SHRINK is implemented as an ordered production system in
which each production rule is represented by a clause in a COND form. A main
loop which includes the COND form is executed until a production rule fires that
causes a return (the “BYE” rule).

The main procedure here is SHRINK. MATCH is called by it and plays a
major role. PRINTL outputs a list without the usual enclosing parentheses.
WWORD returns a word like “WHEN , “WHERE,” etc. GETNTH selects the
Nth element of a list. PUNTS is a list of pat phrases the psychiatrist uses to
keep the conversation going even though it hasn’t found a more appropriate rule
to apply to the input. It always manages to at least blunder its way through
a conversation. YOUME translates any pronoun or BE-verb from first person
to second person or vice-versa. It is used by YOUMEMAP to roughly invert
a sentence so that the psychiatrist may incorporate parts of it in his response.
VERBP is a predicate which is T for any of a collection of commonly used verbs.
Here is the main function:

(DEFUN SHRINK () ; Simple Rogerian therapist simulation
(PROG ()
(SETQ WWORDCOUNT 0) ; initialize counters
(SETQ PUNTCOUNT 0)
(PRINTM WELCOME TO MY SOFA) ; welcome message
(PRINTM PLEASE ENCLOSE YOUR INPUT IN PARENTHESES)
LOOP (SETQ S (YOUMEMAP (READ))) ; get user input, invert person.
(COND
; the production rules follow:
((MATCH ’(BYE) S)
(RETURN ’GOODBYE))
((MATCH ’(YOU ARE (* X)) S)
(PRINTL (APPEND ’(PLEASE TELL ME)
(LIST (WWORD))
*(YOU ARE)
) 9D))
((MATCH ’(YOU HAVE (* X)) S)
(PRINTL (APPEND ’(HOW LONG HAVE YQOU HAD) X)) )
((MATCH ’(YOU FEEL (* X)) 8)
(PRINTM I SOMETIMES FEEL THE SAME WAY) )
((MATCH ’(BECAUSE (* X)) S)
(PRINTM IS THAT REALLY THE REASON) )
((MATCH NIL S) (PRINTM PLEASE SAY SOMETHING))
((MATCH ’(YES (* X)) S)
(PRINTL (APPEND ’(HOW CAN YOU BE SO SURE) X)) )
((MATCH ’(ME ARE (* X)) S)
(PRINTL (APPEND ’(OH YEAH I AM) X)) )
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((MATCH ’ ((VERBP V) (* X)) S)

(PRINTL (APPEND ’(0Y YOI YOI HE WANTS THAT
I SHOULD GO AND) (LIST V) X) ) )

((MATCH * ((WPRED W) (* X)) S)

(PRINTL (APPEND ’(YOU TELL ME) (LIST W)) ) )
((MATCH ’ ((DPRED W) ME (* X)) 8)

(PRINTL (APPEND ’ (PERHAPS I)(LIST W) X) ) )
((MATCH ’ (DO ME THINK (* X)) S)(PRINTM I THINK YOU

SHOULD ANSWER THAT YOURSELF))
((MEMBER ’DREAM 8)

(PRINTM FOR DREAM ANALYSIS SEE FREUD))
((MEMBER ’LOVE 8S)

(PRINTM ALL IS FAIR IN LOVE AND WAR))
((MEMBER °NO S) (PRINTM DONT BE SO NEGATIVE))
((MEMBER ’MAYBE S) (PRINTM BE MORE DECISIVE))
((MEMBER ’YOU S) (PRINTL S))

; here’s the rule that can’t fail:
(T (SETQ PUNTCOUNT (ADD1 PUNTCOUNT))
(COND ((EQUAL PUNTCOUNT 7)
(SETQ PUNTCOUNT 0)))
(PRINTL (GETNTH PUNTCOUNT PUNTS)) ) )
(GO LOOP) ))

The next function, PRINTL, prints a list without outer parentheses. It helps
. by making the output look more attractive than it would if PRINT were used
. in its place.

(DEFUN PRINTL (MESSAGE)
(PROG ()
(MAPCAR
(FUNCTION (LAMBDA (TXT)
(PROG () (PRIN1 TXT) (TYOD 32)) ))
MESSAGE)
(TERPRI} ) )

WWORD is a function that returns WHEN, WHY or WHERE. It is used to
make questions out of the user’s input.

(DEFUN WWORD ()
(PROG () (SETQ WWORDCOUNT (ADD1 WWORDCOUNT))
(COND ((EQUAL WWORDCOUNT 3) (SETQ WWORDCOUNT 0)))
(RETURN (GETNTH WWORDCOUNT
> (WHEN WHY WHERE) )) ) )

The predicate WPRED is true of the atoms WHY, WHERE, WHEN and
WHAT, and it is used to help analyze an input sentence.
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(DEFUN WPRED (W)
(MEMBER W ’(WHY WHERE WHEN WHAT)) )

The predicate DPRED is true of DO, CAN, SHOULD and WOULD. It is

also used in input analysis.

(DEFUN DPRED (W)
(MEMBER W ’ (DO CAN SHOULD WOULD)) )

Thé next function returns the Nth element of LST.

(DEFUN GETNTH (N LST)
(COND ((NULL LST) NIL)
((ZEROP N) (CAR LST))
(T (GETNTH (SUB1 N)(CDR LST))) ) )

The atom PUNTS is used to store the list of phrases that are used as responses
of last resort.

(SETQ PUNTS
*((PLEASE GO ON)
(TELL ME MORE)
(I SEE)
(WHAT DOES THAT INDICATE)
(BUT WHY BE CONCERNED ABOUT IT)
(JUST TELL ME HOW YOU FEEL) ) )

The function YOUME translates some words from 1st to 2nd person or from
2nd to 1st person. For example, if the input is YOU, then the output is ME.

(DEFUN YOUME (W)

(COND ((EQ W ’I) ’YOU)
((EQ W ’ME) ’YOU)
((EQ W ’YOU) ’ME)
((EQ W *MY) ’YOUR)
((EQ W ’YOUR) °’MY)
((EQ W ’YOURS) ’MINE)
((EQ W °MINE) ’YOURS)
((EQ W ’AM) ’ARE)
(TW))

In order to convert an entire sentence from the user’s viewpoint to the
SHRINK’s viewpoint, the function YOUMEMAP applies the function YOUME
to each word in the list that is input.

(DEFUN YOUMEMAP (LST) (MAPCAR (FUNCTION YOUME) LST))

VERBP is a predicate that is true of certain verbs.
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| (DEFUN VERBP (W)

. (MEMBER W (GO HAVE BE TRY EAT TAKE HELP MAKE GET JUMP
WRITE TYPE FILL PUT TURN COMPUTE
THINK DRINK BLINK CRASH CRUNCH ADD) ) )

3.4.2 A Session with the SHRINK

1 The following is a sample dialog between a human user (the “patient”) and the
“ QHRINK. The patient’s input is shown in lower case text while the SHRINK's
' responses are shown in capital letters.

"WELCOME TO MY SOFA
LEASE ENCLOSE YOUR INPUT IN PARENTHESES

TELL ME MORE

i have a small problem)

0w LONG HAVE YOU HAD A SMALL PROBLEM

ever since my girlfriend discovered my true love)
LL IS FAIR IN LOVE AND WAR

HOW CAN YOU BE SO SURE
(because i understand your comment)

(she wants me to give up computers)
SHE WANTS YOU TO GIVE UP COMPUTERS
(you got it)

WHAT DOES THAT INDICATE

(i cant see you anymore)

£ YOU CANT SEE ME ANYMORE

(no but)

DONT BE SO NEGATIVE

(but i will dream of you)

FOR DREAM ANALYSIS SEE FREUD

© This session illustrates the flavor of a conversation with the SHRINK. One should

not expect too much from a program as simple as the SHRINK; it doesn’t have
much of a knowledge base: eighteen production rules and a few odd bits of
- Syntactic information, no grammar, and no dictionary.
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On the other hand, this program illustrates at a simple level how a production
system approach may be used to build a conversational program.

3.5 Mathematical Formula Manipulation

3.5.1 Motivation

While the SHRINK program shows how the production systems approach and
pattern matching may be employed in building an AI program, the example doesg
not illustrate how the database may be gradually transformed by a sequence of
production-rule firings to work towards the solution of a problem. The SHRINK
has a short attention span, using only one production rule on each new “problem”
(i.e., the problem of generating a response to the user’s input).

In this section, a program called “LEIBNIZ” is presented which shows how a
production system may be set up so that each time a rule fires, a little progress
is made towards the solution of a relatively complicated problem. The LEIBNIZ
program also illustrates several other techniques, including;:

1. the explicit representation of production rules as data rather than as
clauses of a COND form;

2. the use of the function MATCH in examining the top two levels of list
structure, rather than only the top level:

3. the use of production rules that can potentially be applied at any level of
a data structure in the database; and

4. the use of the database to store the current goal that the system works
toward, and the use of production rules to change that goal.

The LEIBNIZ program is capable of solving some of the following kinds
of mathematical problems: (a) taking the derivative of a function such as a
polynomial, and (b) simplifying an expression. For example, the function

flz) =22 + 22
has the derivative
E%f(m) =2r+2.

When f(z) is suitably represented, LEIBNIZ can find a representation for its
derivative. The representation for f(z) above, that LEIBNIZ can work with, is:

(PLUS (EXP X 2) (TIMES 2 X)).
To express that we wish the derivative of f(x), we write for LEIBNIZ:
D FXX
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‘ and in the case of our example, we would have

| (D (PLUS (EXP X 2) (TIMES 2 X)) X).

Given this starting formula, LEIBNIZ would gradually transform it into the
¥ Jesired answer,

:, (PLUS (TIMES 2 X) 2).

’ LEIBNIZ also can simplify formulas. For example, it can reduce the formula
(TIMES (EXP X 1) (PLUS 7 -6))
' to the much simpler formula,

3 Differentiation of algebraic expressions is something commonly done by col-
i lege freshmen in an introductory calculus course. Perhaps because it is rare to
. find much younger people doing it, differentiation has been thought to require in-
¢ telligence. Differentiation and integration of formulas were items of study by Al
| researchers in the early 1960s. Today, techniques for mathematical formula ma-
j nipulation are well understood and are not commonly discussed in the research
E literature. Nonetheless, the topic still provides suitable material for illustrating
: pattern matching and production systems in action.

5.2 Overall Structure of LEIBNIZ

LEIBNIZ is a collection of function definitions and SETQ forms which implement
he three components of a production system: rule base of production rules, con-
rol scheme, and database of state information. Each of these three components
is explicitly represented by some of the definitions and forms. In the next three
* subsections, these components and their implementations are described.

3.5.3 Production Rules for LEIBNI1Z

The production rules for LEIBNIZ contain knowledge about how to take deriva-
- tives and simplify formulas. Therefore, most of these rules correspond to math-
- ematical formulas; these are shown in Fig. 3.5.
Each production rule is represented as a 4-tuple of the form,

( current_goal pattern transformation rule_name )

. where the current goal and pattern make up the “condition,” the transformation
specifies the action for the production rule, and the rule name is used in reporting
progress. An example rule is the following:
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Differentiation Rules

DIFF_PLUS_RULE £ u(z) + v(z)] = Lu(z) + Lo(z)
| d_ _
DIFF_X_RULE Lo=1

DIFF_CONST_RULE Le=0
DIFF_PRODUCT_RULE £ [u(z) - v(z)] = v(z) L u(z) + u(z) L v(z)

DIFF_POWER_RULE 4 fu(z)]" = nfu(@)]" ! £ u(z)

EXPO_RULE =1
EXP1_RULE =z
TIMES1_RULE z-l=x
ONE_TIMES_RULE l.z=12z
PLUSO_RULE r+0=2z
ZERO_PLUS_RULE O+z=2
TIMESO_RULE z-0=0

ZERO_TIMES_RULE 0-z=0

Figure 3.5: Mathematical rules used in LEIBNIZ. Not shown are three simpli-
fication rules that work by performing calculations rather than symbolic trans-
formations. There is also a “goal-change” rule used for control.
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If the current goal is DIFFERENTIATE and there is a subformula of
the form (D (PLUS E1 E2) V1) then replace the subformula by one of the
form (PLUS (D E1 V1) (D E2 V1)); this is called DIFF_PLUS_RULE.

T In this example, E1, E2, and V1 are arbitrary subexpressions; normally V1
L represents the variable of differentiation, X. This rule says that in order to find
' the derivative of a sum, take the sum of the derivatives of the constituents to

b the sum. In other words,

L u(e) +o(@)] = Ful@) + Fro(@).

; As illustrated again in this rule, LEIBNIZ works with formulas expressed in
f 2 LISP-like form. The following operations are supported as binary operations
(taking only two arguments): PLUS, TIMES, and EXP. Making LEIBNIZ work
. with PLUS and TIMES allowing any number of operands is an exercise left to
p the reader. The unary operation SUBI is also supported, and it is useful in the
| intermediate stages of differentiating polynomials.

We now give the LISP representations for all the production rules that LEIB-
I NIZ uses. There are five rules for differentiation, one rule for changing the goal,

1

} and eleven rules for simplification of formulas. The first representation is for the
rule just discussed. It uses a helping function PLUSFORM, which is a predicate
| that is true whenever its argument has the form (PLUS El E2).

§ (SETQ DIFF_PLUS_RULE ’(

DIFFERENTIATE

(D (PLUSFORM F1) (7 V1))

(LIST ’PLUS (LIST ’D E1 V1) (LIST ’D E2 V1))

DIFF_PLUS_RULE
) )

Next, PLUSFORM, a helping function for DIFF_PLUS_RULE, is defined.
t is used to match certain second-level expressions:

(DEFUN PLUSFORM (F)
(AND (NOT (ATOM F))
(MATCH ’(PLUS (7 E1) (? E2)) F) ) )

The next rule says that the derivative of X with respect to Xis 1. It will
. work for X or any other variable.

(SETQ DIFF_X_RULE ’(
DIFFERENTIATE ,
(D ((LAMBDA (V) (SETQ E1 V)) E1) ((LAMBDA (V) (EQ V E1)) E2))
1
DIFF_X_RULE ) )
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The pattern for DIFF_X_RULE uses two local functions. The first causes the
second subexpression (the function to be differentiated) to be immediately as.
signed as the value of E1. The second local function only succeeds if the subex.
pression there (telling which variable differentiation is with respect to) is the
same as that saved in E1.

The rule DIFF_CONST_RULE says that if F is not a function of X, then itg
derivative with respect to X is 0.

(SETQ DIFF_CONST_RULE °’(
DIFFERENTIATE
(D ((LAMBDA (F)(SETQ E1 F)) F)
((LAMBDA (V1) (NO_V1 E1 V1)) V1) )
0
DIFF_CONST_RULE ) )

The pattern for this rule also uses two local functions. The first saves the function
to be differentiated (as in the previous rule). The second function is a predicate
that is true only if the variable that differentiation is with respect to does not
appear in the function to be differentiated.

The function NO_V1 is a helping function for DIFF_CON ST_RULE; it re-
turns T if V1 does not occur in F.

(DEFUN NO_V1 (F V1)

(COND ((NULL F) T)
((ATOM F) (NOT (EQ F V1)))
((NO_V1 (CAR F) V1) (NO_Vi (CDR F) V1))
(T NIL) ) )

The next rule is for differentiating products:

(SETQ DIFF_PRODUCT_RULE °(
DIFFERENTIATE
(D
((LAMBDA (F)
(AND (NOT (ATOM F))
(MATCH ° (TIMES (7 E1) (7 E2)) F)) ) E3)
(7 v1) )
(LIST ’PLUS
(LIST ’TIMES E2 (LIST 'D E1 V1))
(LIST °TIMES E1 (LIST °D E2 V1)) )
DIFF_PRODUCT_RULE
))

The rule for differentiating powers is DIFF_POWER_RULE; it says that the
derivative of [u(z)]™ with respect to z is equal to n[u(z)]" ! times the derivative
of u(z) with respect to .
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b (SETQ DIFF_POWER_RULE ’(
3 DIFFERENTIATE
(D
((LAMBDA (F)
(AND (NOT (ATOM F))
(MATCH ’ (EXP (? E1) (NUMBERP E2)) F)) ) E3)
(? V1) )
(LIST ’TIMES E2
(LIST ’TIMES (LIST ’EXP E1 (LIST ’SUB1 E2))
(LIST 'D E1 V1) ) )
DIFF_POWER_RULE
))

The production rules for simplification are of two general kinds. Some actu-
| ally perform arithmetic on constants. Others make use of properties of arithmetic
L to eliminate the need for operations in certain contexts. Here is a rule that ac-
| tually performs arithmetic on constants; it’s a simplification rule for subtracting
£ 1:

§ (SETQ SUB1_RULE ’(

1 SIMPLIFY

(SuB1 (NUMBERP E1))

(SUB1 E1)

SUB1_RULE

) )

: A rule that makes use of a property of an operation is the following rule for
1 simplifying an exponentiation by 0. It represents the fact that 20 is 1.

[ (SETQ EXPO_RULE ’(
3 SIMPLIFY

(EXP (7 E1) 0)
1

EXPO_RULE

) )

] It is also useful to use the fact that £' = z; here is the rule for exponentiation
3 by 1:

(SETQ EXP1_RULE ’(
SIMPLIFY
(EXP (7 ED) 1)
El
EXP1_RULE
) )

A rule that eliminates multiplications by 1 is the following:
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(SETQ TIMES1_RULE ’(
SIMPLIFY
(TIMES (? E1) 1)
E1l
TIMES1_RULE
) )

Since the pattern-matching technique will match operands in the order spec-
ified, we need a variation of the rule for multiplication by 1 to handle the case
of (TIMES 1 X), rather than the case (TIMES X 1).

(SETQ ONE_TIMES_RULE ’(
SIMPLIFY
(TIMES 1 (? E1))
E1l
ONE_TIMES_RULE
D)

The rules for adding 0 are the next two:

(SETQ PLUSO_RULE ’(
SIMPLIFY
(PLUS (? E1) 0)
E1l
PLUSO_RULE
))

; variation on rule for adding 0
(SETQ ZERO_PLUS_RULE ’(

SIMPLIFY

(PLUS 0 (? E1))

E1

ZERO_PLUS_RULE

) )

Multiplication by 0 is another case where simplification can be made:

(SETQ TIMESO_RULE °’(
SIMPLIFY
(TIMES (? E1) 0)
0
TIMESO_RULE
))

; variation on rule for multiplication by 0
(SETQ ZERO_TIMES_RULE ’(

h
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SIMPLIFY
(TIMES 0 (? E1))
0

ZERO_TIMES_RULE

))

. More rules that do arithmetic on constants are the following ones. The next
b rule attempts to add constants when possible.

f (SETQ CONSTANT_ADDITION_RULE ’(

{  SIMPLIFY

(PLUS (NUMBERP E1) (NUMBERP E2))
(PLUS E1 E2)
CONSTANT_ADDITION_RULE

))

Here is the rule to multiply constants when possible.

L

| (SETQ CONSTANT_MULTIPLICATION_RULE ’(
SIMPLIFY

(TIMES (NUMBERP E1) (NUMBERP E2))
(TIMES E1 E2)
CONSTANT_MULTIPLICATION_RULE

) )

The next rule is one which plays a role in directing the activities of the
roduction system as a whole. It is placed after all the rules of differentiation,
and when it fires, it causes the current goal to be changed to SIMPLIFY.

(SETQ GOAL_CHANGE_RULE °’(

DIFFERENTIATE

((x F))

(PROG () (SETQ CURRENT_GOAL ’SIMPLIFY) (RETURN F))
GOAL_CHANGE_RULE

))

Now that all seventeen production rules are represented in LISP, they can
be listed as the value of an atom RULES for easy manipulation by the control
scheme. The following SETQ form makes a list of all the production rules.
There is a certain amount of ordering that is intentional; the differentiation
E rules precede the simplification rules, and the goal-change rule separates them.

(SETQ RULES (LIST DIFF_PLUS_RULE DIFF_X_RULE DIFF_CONST_RULE
DIFF_PRODUCT_RULE DIFF_POWER_RULE
GOAL_CHANGE_RULE ; this rule follows the DIFF rules
SUB1_RULE EXPO_RULE EXP1_RULE
TIMES1_RULE ONE_TIMES_RULE
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TIMESO_RULE ZERO_TIMES_RULE

PLUSO_RULE ZERO_PLUS_RULE

CONSTANT_ADDITION_RULE CONSTANT_MULTIPLICATION_RULE
) )

This rule base can easily be enlarged, without a need to modify any of the

rest of the production system.

3.5.4 Control Scheme for LEIBNIZ

In order to apply the production rules in an effective fashion to solve problems, a
control scheme is needed. In the SHRINK program, all the rules were sequenced
inside a COND form. By contrast, in LEIBNIZ, the rules are applied explicitly
by a set of functions: CONTROL, TRY_RULES, TRY_RULE, TRY_RULE]I,
and TRY_RULE_ON_LIST. To make the production system start running, the
function CONTROL is invoked with no arguments:

(CONTROL) .

CONTROL causes TRY_RULES to try rules until one succeeds, then it starts
again; when no rules fire, the current formula is returned.

(DEFUN CONTROL ()

(PROG ()
LOOP (COND ((NOT (TRY_RULES RULES))

(RETURN CURRENT_FORMULA) ))
(GO LooP) ) )

TRY_RULES is a function that tries each rule on the list given to it until

one succeeds, or the end of list is reached, or the current formula is no longer a
list. If a rule fires, it returns the current formula; otherwise it returns NIL.

(DEFUN TRY_RULES (RULES_LEFT)

(COND ((NULL RULES_LEFT) NIL)

((ATOM CURRENT_FORMULA) NIL)
((SETQ TEMP
(TRY_RULE (CAR RULES_LEFT) CURRENT_FORMULA) )
(SETQ CURRENT_FORMULA TEMP) )
(T (TRY_RULES (CDR RULES_LEFT))) ) )

The next function, TRY_RULE, is one that tries to apply a single rule to an

expression or one of its subexpressions. If the rule is successful, the transformed
expression is returned; otherwise NIL is returned.

(DEFUN TRY_RULE (RULE EXPRESSION)

(PROG (RULE_GOAL PATTERN ACTION)

(SETQ RULE_GOAL (CAR RULE))
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(SETQ PATTERN (CADR RULE))
(SETQ ACTION (CADDR RULE))
(COND ((NOT (EQ CURRENT_GOAL RULE_GOAL)) (RETURN NIL)))

(RETURN (TRY_RULE1 EXPRESSION)) ) )

The recursive slave of TRY_RULE, the function TRY_RULE1 does the real
F - work of searching down through the current expression to see if the rule can be
E applied anywhere in it.

| (DEFUN TRY_RULE1 (EXPRESSION)
g (COND ; make sure EXPRESSION is a list; return if not...
((ATOM EXPRESSION) NIL)
; attempt to apply rule to whole EXPRESSION...
((MATCH PATTERN EXPRESSION)
(FIRE) )
; try rule on subexpressions...

(T (TRY_RULE_ON_LIST EXPRESSION)) ) )

Helping in the recursive search of the expression is the following function that
f tries to apply the rule to each element on EXPRESSION_LIST. It returns NIL
if the rule cannot be applied in any of the expressions or their subexpressions.
L' Otherwise it returns the original list with one replacement: the first expression
in which the rule can be applied is replaced by the result of applying the rule in
it.

- (DEFUN TRY_RULE_ON_LIST (EXPRESSION_LIST)
(COND ((NULL EXPRESSION_LIST) NIL)
((SETQ TEMP (TRY_RULE1 (CAR EXPRESSION_LIST)))
(CONS TEMP (CDR EXPRESSION_LIST)) )
((SETQ TEMP (TRY_RULE_ON_LIST (CDR EXPRESSION_LIST)))
(CONS (CAR EXPRESSION_LIST) TEMP) )
(T NIL) ) )

The next function is evaluated when a production rule fires. Its main purpose
is to print a message on the console showing that a rule is firing and which rule
-t is.

i (DEFUN FIRE ()
(PROG ()

(PRIN1 (CADDR (CDR RULE))) ; print name of rule
(TYD 32) ; print a space
(PRINT ’FIRES) ; print ‘FIRES’
(RETURN (EVAL ACTION)) ; do ACTION

))
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3.5.5 Database of State Information in LEIBNIZ

The database of state information consists of two items: the current formuyl,
and the current goal. The current formula reflects any transformations that
have been made by the production rules, and it is the object being transformed
into a solution to the original problem.

The current goal indicates whether the system is attempting to differentiate
within the current formula or to simplify the current formula. This goal helps
control the firing of production rules to implement a strategy for solving dif.
ferentiation problems. The strategy is to do as much differentiation as possible
first, and then simplify the result. The goal mechanism also serves to improve
the efficiency of simplification by disabling the detailed condition testing for the
differentiation rules.

Initializing the database is simply a matter of assigning values to two litera)
atoms CURRENT_GOAL and CURRENT_FORMULA. This can be accom-
plished by a set of SETQ forms such as the following three.

(SETQ CURRENT_GOAL ’DIFFERENTIATE)
(SETQ FO (D (PLUS (EXP X 2) (TIMES 2 X)) X))
(SETQ CURRENT_FORMULA FO)

3.5.6 Performance of LEIBNIZ

A sample run of LEIBNIZ solving a differentiation problem is now shown. Let us
assume that the database of state information has been initialized as explained
above. This indicates that we want LEIBNIZ to compute the derivative of the
function 22 + 2z, and to simplify its result. After the user types (CONTROL),
the following messages are displayed:

DIFF_PLUS_RULE FIRES
DIFF_PRODUCT_RULE FIRES
DIFF_X_RULE FIRES
DIFF_CONST_RULE FIRES
DIFF_POWER_RULE FIRES
DIFF_X_RULE FIRES
GOAL_CHANGE_RULE FIRES
SUB1_RULE FIRES
EXP1_RULE FIRES
TIMES1_RULE FIRES
TIMES1_RULE FIRES
TIMESO_RULE FIRES
ZERO_PLUS_RULE FIRES

and finally the simplified derivative of the original formula is returned as the
value:
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LUS (TIMES 2 X) 2).

om the record of rule firings we can see that only rules for differentiation fire
fpefore the change of goal. Thereafter, only rules for simplification fire. Interest-
Lingly enough, some of the rules fire more than once; DIFF_X_RULE fires twice,
< does TIMES1_RULE. Other rules do not fire at all on this particular example.
Because the production rules of LEIBNIZ are in a fairly pure, uncompiled
rm (we have not used a discrimination net, for example), LEIBNIZ spends a lot
time testing and retesting production rule conditions that have little chance
being true. Thus it is not very efficient. However, the beauty of a production
stem is that one can easily introduce more production rules to expand the
|range of problems that the program can handle. The reader can add rules to
I LEIBNIZ without much trouble that will enable it to handle many formulas
Einvolving trigonometric functions, for example.

-
k!

.6 The Notion of Unification

the function MATCH, a pattern is compared with a subject. At each step, the
ements should be equal, or the pattern should have a “wild-card” element of the
ppropriate type. In the case of the “(* X) type of element, in a successful match,
would receive a value indicating what the element was put into correspondence
ith. The element (? X) can be considered as a variable, to which a value is
iven during the course of matching.
Let us now consider a different kind of matching problem: one in which no
distinction is made between pattern and subject. Suppose we wish to match two
pressions:

1= (AB (?X)D) and
(A (?7Y)CD).

hen, with the right kind of matching function, we should find that they can
indeed be matched, and that X corresponds to C and Y corresponds to B. On
he other hand, if we had

EB=@QACNCEY)

here is a problem in matching E1 with E3. Even though at each position we
have either an equality between elements or an element matched with a wild
card, Y would have to have the value B at the same time as it has value D, an
inconsistency! The pair E1 and E2 is said to be unifiable while the pair E1,and
- E3 is not unifiable. Suppose

E4 = ((? 2Z) BCD).

~ Then the set {E1, E2, E4} is unifiable since there exists a set of assignments
of values to variables such that all the correspondences are consistent. We shall
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treat the subject of unification in Chapter 6 in detail when we see that this kind
of pattern matching plays a crucial role in two areas: theorem proving using the
“resolution” method, and general problem solving using the predicate calculus,

3.7 Bibliographical Information

Production systems are described in an article by Davis and King. The more
general notion of pattern-directed control is treated in a book edited by Wa-
terman and Hayes-Roth. Nilsson stresses production systems in his Principles
of Artificial Intelligence. Discrimination nets are described in [Charniak et al
1979].

Pattern matching was recognized as important in the language SNOBOL,
The function MATCH developed in this chapter is modelled after one presented
by Winston, but avoids the use of functions that decompose atom names (EX-
PLODE, ATOMCAR, ATOMCDR).

Dialog was used as a means of demonstrating Al systems with Weizenbaum’s
ELIZA and later with Colby’s PARRY. Today it is studied as a special topic in
natural language understanding.

Early studies in formula manipulation for the calculus include [Slagle 1963].
A LISP-based system that has found widespread use for symbolic mathemat-
ics is MACSYMA [Mathlab 1975, [Moses 1976], [NASA 1977]. A more recent
software system for symbolic mathematics is SMP, which is especially useful in
scientific applications such as theoretical physics [Wolfram 1983, 1984]. The
LEIBNIZ program presented in this chapter uses some of the differentiation and
simplification rules used in a program in [Weissman 1967]; Weissman’s program
does not use the production-system approach, and was written for a dialect of
LISP incorporating an “EVALQUOTE” feature, seldom found in today’s imple-
mentations of LISP. Weissman’s program, unlike LEIBNIZ, also supports the
conversion of the mathematical formulas from infix notation to prefix notation
and vice versa.

Unification is described further in Chapter 6, and references for it may also
be found in that chapter.
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: Exercises

1. The production-system method of program organization is commonly used
in Al systems.
(a) List the components of a production system.
(b) What is a production rule?
(c) What is the principal advantage in using a production system?-

2. Add new production rules (COND clauses) to ROMAN?2 so that it handles
numbers up to 399 instead of 39.



84

CHAPTER 3. PRODUCTIONS AND MATCHING

. Modify ROMAN3 to handle numbers up to 3999. What is the maximum

number of subcondition tests in the resulting discrimination net?

. Production systems to determine representations for integers in the words

of various foreign languages can range from straightforward to fairly com.-
plex. The case of German is not very difficult.

(a) Write production rules to translate an integer in the range 0 to 99
into German words.

(b) Implement your system in LISP.

. French is slightly more complicated.

(a) Make up a set of production rules for translating integers in the range
0 to 99 into the appropriate French-language words. For example 2
becomes DEUX and 75 becomes SOIXANTE QUINZE.

(b) Implement your production system in LISP and demonstrate it on
the numbers 0, 1, 9, 10, 16, 17, 19, 20, 21, 22, 30, 59, 60, 70, 76, 77,
80, 90, and 99. How many clauses are there in your principal COND
form?

. Using the TRACE option in LISP, determine the number of times the

function MATCH is invoked (including all the recursive invocations) in
evaluating the form

(MATCH *((* X) BC (x Y)) "(AB CD E)).

. The function MATCH assigns values to variables in successful matches

involving joker, predicate, and wild sequence constructs. Is it possible
for one (or more) of these variables ever to be assigned a value when the
overall match is not successful? Explain.

. As suggested on page 65, reimplement that MATCH function as a dis-

crimination net.

- Modify MATCHS (creating MATCH?Y) in such a way that the application

of predicates, rather than only to individual elements of S, can be to
sequences of elements of S. For example, suppose that (INCREASING L)
returns T if L is a list of increasing integers. Then we would like

(MATCH7 ’(101 (INCREASING X) (INCREASING Y))
(101 246835 7))

to return T and have the side effects of assigning the list (2468)to X
and the list (35 7) to Y.
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After completing the previous problem, define a function DECREASING
and a function SAME in the same spirit as INCREASING. These functions
all will take a single argument, assumed to be a list, and return either T
or NIL. For example,

(SAME (3 3 3 3)) ; produces T

(SAME ' (2 5)) ; produces NIL
(SAME ’(4)) ; produces NIL
(SAME °( ) produces NIL

(DECREASING ’ (5 4 1)) ; produces T
(DECREASING ’(2)) ; produces NIL
(DECREASING ’(10 10 9)) ; produces NIL

Then test your function MATCH?7 with the following examples:

(SETQ P1 ’ ((INCREASING X) (SAME Y)(DECREASING Z)))
(SETQ P2 ’ ((DECREASING X)(SAME Y) (INCREASING Z)))
(SETQ S1 (1 23332 1)

(SETQ S2 (54 4 4 4 5))

(MATCH7 P1 S1)
(LIST X Y 2)
(MATCH7 P1 S2)
(LISTX Y 2)
(MATCH7 P2 S1)
(LIST X Y 2)
(MATCH7 P2 S52)
(LIST X Y 2)

Write a matching function MATCHS whose behavior is similar to that of
MATCHS except that it passes the bindings (of matched fragments of the
subject to variables in the pattern) back as a value, rather than by setting
the global values of the variables.

Modify the SHRINK so that instead of always using a “punt” when no
other productions match, it alternately uses a punt or a reference to pre-
vious items of the dialog. To do this you need the following: a way to
remember some of the conversation (perhaps by using a SETQ to store
some matched fragment in one of the production rules), a way to get alter-
ation of the actions in the punt production rule (save a flag telling which
action to next time, and complement the flag each time the punt pro-
duction is reached), and a way to make reference to the stored fragment.
The result of this enhancement might be the Shrink saying something like
“EARLIER YOU MENTIONED YOU HATE HOMEWORK?” or “LETS
DISCUSS THE FACT THAT YOU ADORE VAN GOGH.”
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Design a new version of SHRINK which employs a discrimination net.
Alter the production rules so that the net leads to a substantial increase
in efficiency in finding the most suitable rule to fire.

Develop a dialog program in the style of SHRINK which portrays a person-
ality of its own. Some suggestions: (1) a political candidate (or particular
office-holder) who answers all questions in his/her own narrow way, (2) a
paranoid, (3) a widget salesman.

To what extent does SHRINK use an ordered production system? Give
an example of a user input that would generate different responses from
SHRINK if the order of the production rules was changed.

To what extent does LEIBNIZ use an ordered production system? Reverse
the order of the differentiation rules (leaving the other rules in the same
order) and run LEIBNIZ on the same formula for which a run is described
in the text. What differences do you find?

Run LEIBNIZ on the formula (D (PLUS (TIMES X 7) (TIMES 8 X)) X).
What is the sequence in which the production rules fire?

Add new differentiation rules to LEIBNIZ so that it can handle mathe-

matical expressions involving the function sin. An example of something
that LEIBNIZ should be able to differentiate is

(PLUS X (SIN (TIMES 2 X))).

The chain rule for differentiating a composition of functions should be
brought into play here.

As mentioned on page 73, LEIBNIZ allows only two operands with PLUS
and TIMES in the formulas it manipulates. Develop the modifications
that will permit LEIBNIZ to accept PLUS and TIMES with any number
of arguments, as LISP does.

Develop a discrimination net that uses the same differentiation and sim-
plification techniques that LEIBNIZ uses. Compare the running times for
LEIBNIZ and your program on the example illustrated in the text.

One of LEIBNIZ’s rules, DIFF_PLUS_RULE, uses a helping function,
PLUSFORM, in the representation of the pattern part of the rule. On the
other hand, DIFF_X_RULE uses local functions (with LAMBDA forms),
avoiding the need for defining a named function. Rewrite the represen-
tation for DIFF_PLUS_RULE using local function definitions instead of
PLUSFORM.
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Devise a new control scheme which avoids testing the same productions
on the same subexpressions over and over again. One way to do this is to
keep track of subexpressions that have changed since each production rule
was tried, and if the rule failed, only try the rule again if the subexpression
has changed.

Some of the production rules for LEIBNIZ involve pattern matching at
the top two levels of the current formula. Make up a pattern that actually
performs matching at the top three levels of a formula.

A rational number may be represented by a dotted pair (n . d) of integers
(FIXNUMs) where n is the numerator and d is the denominator. Develop
the following functions:

(a) (REDUCE =z) which simplifies the fraction, if possible,

(b) (ADD z y) which computes the sum of rationals z and y, and

(c) (MULTIPLY z y) which computes the product of rationals z and y.

Write down a set of rules that could be used to design a production system
for symbolic integration of simple formulas.

Design and demonstrate a production system that uses rules of the previ-
ous problem to solve some freshman-calculus integration problems.






Chapter 4

Knowledge Representation

.1 Characteristics of Knowledge

ne usually makes a distinction between “data’ and “information.” Data con-
sists of raw figures, measurements, and files that do not necessarily answer the
_questions that its users may have. Information, on the other hand, is some-
hat more refined. It is often the result of processing crude data, giving useful
statistics for the data, or answering specific questions posed by users. In Al we
ually distinguish a third kind of order in memory: “knowledge.” We think
f knowledge as a refined kind of information, often more general than that
und in conventional databases. But it may be incomplete or fuzzy as well. We
ay think of knowledge as a collection of related facts, procedures, models and
euristics that can be used in problem solving or inference systems. Knowledge
ay be regarded as information in context, as information organized so that it
an be readily applied to solving problems, perception and learning.
Knowledge varies widely in both its content and appearance. It may be spe-
ific, general, exact, fuzzy, procedural, declarative, etc. There are several com-
monly used methods to organize and represent knowledge. These are described

n the following section.

§4.2 Overview of Knowledge Representation
Methods

Before describing a few methods in some detail, it is useful to consider briefly a
number of the general approaches that have been used for representing knowl-
edge. These include: production rules, inclusion hierarchies, mathematical log-
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ics, frames, scripts, semantic networks, constraints, and relational databases
Production rules, illustrated in Chapter 3, are a general method that is partic-
ularly appropriate when knowledge is action-oriented.

Inclusion hierarchies, described later in this chapter in some detail, handle
a particular kind of knowledge very well: knowledge about objects that cap
be grouped into classifications, such that some categories are subcategories of
others. Inclusion hierarchies may be used as an organizing scheme in connection
with other methods, such as the predicate calculus.

Mathematical logics such as the predicate calculus provide a general and
fundamental capability which supports general logical inference. However, these
logics seldom provide organizational support for grouping facts so that the facts
can be efficiently used. In this sense, mathematical logics are “low-level” repre-
sentation schemes that do well with details but require additional support to be
useful in building nontrivial systems.

Frames provide an organizational scheme for knowledge bases, but not much
more than this; the detailed representations require other methods. Scripts have
been used in some experimental systems for natural language understanding for
representing scenarios with standard chronology such as what a person does
when he/she goes to a restaurant: gets a table, waits for the menu, orders, eats,
pays the bill, and leaves; scripts are like frames with additional support for de-
scribing chronology. Semantic networks, like frames, are a general organizational
framework, but there is not necessarily any particular kind of low-level support
in a semantic net system; any system in which the modules of knowledge may be
described as nodes in a labelled graph may be called a semantic net, although it
tends to be systems that attempt to mimic the neuronal interconnection struc-
ture of the biological brain that are most often labelled by their creators as
“sernantic networks.”

A kind of knowledge that is often described as a representation method is
“constraints.” A constraint is a relationship among one, two or more objects
that may be viewed as a predicate; the constraint is to be satisfied by the system
in finding a solution to a problem. By emphasizing the use of constraints in
representing a set of objects and their interrelations, a constraint-based approach
to knowledge representation may be used.

Finally, relational databases can sometimes serve as a method for knowledge
representation; as they are usually implemented, they are good at manipulating
large quantities of regularly-structured information in certain, largely precon-
ceived, ways. Relational databases have not been ideal for AI applications in
the past because of their inefficiency in making large numbers of small inferences
involving either very small relations or small parts of larger relations; there is
currently research going on to make relational databases more suitable for Al
applications.

This chapter presents the most important methods for knowledge represen-
tation. Inclusion hierarchies, the predicate calculus and frames are the methods
treated here. After a brief discussion of production rules as a means of repre-
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¥ senting knowledge we focus on the problem of representing a single concrete,
| but very powerful, relation: the inclusion relation between classes of objects.
i Next, the use of propositional and predicate logics for representing knowledge
 is taken up. After examining semantic networks, we look at frames, schemata,
# and scripts. Then relational databases are considered. Finally, several issues
* related to knowledge representation are discussed and a comparative summary
t of the methods is given. Some of the other methods and several specialized
 techniques for such problem domains as computer vision and natural language
E understanding are presented in later chapters.

;4.3 Knowledge in Production Rules

| If we examine the SHRINK program to find the basis for its response-making
E ability, we would be hard-pressed to find anything but its production rules em-
edded into the big COND form. The knowledge of what to say when is almost
1 in these rules. Some of the SHRINK’s knowledge, however, lies outside of
e rules, although it is brought into play by the production rules. For example,
e definition of the function VERBP is knowledge (albeit at a primitive level)
fabout the English language and is represented separately from the production
les, but several rules contain patterns which use VERBP.

. Similarly, the knowledge about differentiating formulas in LEIBNIZ lies al-
Emost entirely in its production rules. Some of LEIBNIZ’s ability comes from the
Fcontrol scheme’s method of trying to apply productions at many levels of the
urrent formula, but if we wanted to increase the set of problems that LEIBNIZ
icould solve, we could simply add new rules.

In many of the expert systems described in the literature, such as MYCIN,
M and PROSPECTOR, much of the knowledge is represented within produc-
on rules. The left hand side of a production rule (the condition part) expresses
Fthe characteristics of a situation in which it is appropriate to perform the action
he right hand side) of the production rule. The testing of the condition as
ell as the execution of the action may involve the manipulation of other data
tructures (knowledge bases). Thus the production rules might not embody all
f the knowledge in a system. Even when one plans to embed most of a system’s
owledge in production rules, one should understand the use of other means of
nowledge representation.

.4 Concept Hierarchies

B Much of man’s knowledge about the world is organized hierarchically. All the

| “things” we know of we group into classes or sets. These classes are grouped
Linto superclasses and the superclasses into even bigger ones. We associate with
E most of these classes names which we use to identify the classes. There is a
lass we call “dogs” and another we call “cats.” These are grouped, with some
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other classes, into a superclass called “mammals.” Plants, minerals, machines,
emotions, information and ideas are treated similarly. Much of our knowledge
consists of an understanding of the inclusion relationship on all these classes and
cognizance of various properties shared by all members of particular classes. “A]]
horses have four legs” states that the property “has four legs” is shared by each
member of the class of horses.

4.4.1 Inclusion, Membership and “ISA”

The inclusion relation on a set of classes is very important in AL, and there are
some interesting questions that arise when incorporating it into an Al system.
Our first issue is deciding what statements of English express inclusion relation-
ships. The sentence “A bear is a mammal” expresses that the class of bears is
a subclass of the class of mammals. For this reason, the data structures used to
represent inclusion relations are often called “ISA” hierarchies. The list (BEAR,
ISA MAMMAL) is one way of representing this inclusion relationship. One must
beware of certain relationships which are similar in appearance to inclusion but
are really quite different. “Teddy is a bear” does not really say that the class of
Teddies is a subclass of the class of bears. Rather, it states that the particular
object, Teddy, is a member of the class of bears. Using set notation we would
write

BEARS € MAMMALS

TEDDY € BEARS

The key clue that the first sentence gives us for distinguishing that case from
the second is that “bear,” preceded by the article “A,” is indefinite and refers to
any and presumably all elements of the class. The “A” before “bear” in the first
sentence signals an inclusion relationship, whereas its absence before “Teddy” in
the second sentence indicates that Teddy is a particular object rather than one
representative of a class, and that “is a” means “is an element of the class” in
this case. A list representing the membership relationship in this case could be
(TEDDY ISIN BEAR).

The verb to be is used in various senses, also. “Happiness is a sunny day”
illustrates the use of o be in expressing a metaphor. This expression would
probably not be meant (by whoever uses it) to indicate that the set of happinesses
is a subset of the set of sunny days. More probably, someone saying such a thing
would intend that the listener understand him to mean that sunny days lead to
happiness. “A hot fudge sundae is vanilla ice cream with chocolate sauce” uses is
to mean consists of, making a kind of definition. These uses of is do not express
inclusion, and so one must be careful when attempting to describe the meanings
of English sentences that use to be (in its various forms) in terms of inclusion.
This illustrates one of the many difficulties of dealing with natural language in
a mechanized way.

Let us restrict ourselves to the inclusion relation for the time being. It has a
very important property: transitivity. This indicates, for example, that if (BEAR
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F 1SA MAMMAL) and (MAMMAL ISA ANIMAL) then (BEAR ISA ANIMAL).
b The fact that such a deduction can be made raises an important question: which
| assertions should be represented explicitly in a knowledge base and which should
i be deduced when needed; i.e., left implicit most of the time? The best answer is
i not always apparent. In order to illustrate the advantages and disadvantages of
. various alternatives we develop enough mathematical tools so that the properties
l and problems of various representations can be understood.

, 4.4.2 Partial Orders and Their Representation

b Let S be a set. A set of ordered pairs of elements of S is a binary relation on S.
L A binary relation, <, on S is a partial order if and only if

1. for each z,r < z (reflexive property),
2. for each z, for each y, if £ < y and y < z then z = y (antisymmetry), and

3. for each z, for each y, for each z, if z < y and y < 2 then = < z (transi-
tivity).

For example take S = {a,b,c,d} and let < be the relation

' {(a,b),(c,d), (b,d), (a,d), (a, a), (b,b), (c,c), (d, d)}.

} The graph! of this relation is shown in Fig. 4.1.

a Cc

b d

Figure 4.1: The ordinary graph of a relation.

It is customary to say that a precedes b and that ¢ precedes d, etc. Since every
node must have a self loop, these convey no information on the diagram and can
. be deleted. Next, if one positions the nodes of this graph so that whenever
"z precedes y, z is higher on the page than y, then one can dispense with the
arrowheads and leave just the line segments, as shown in Fig. 4.2.

Noting that a < d is implied by a < b and b < d, the graph becomes less
i cluttered if the “redundant” segment is erased. The resulting picture is called

4 LThe graph of a relation is a diagram in which each element of the set is shown by a node,
& and every pair of elements that is part of the relation is shown by an arc connecting the
L corresponding nodes. An arc connecting a node to itself is called a “self loop.”
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a
c
b
d
Figure 4.2: The graph with self loops and arc directions implicit.
a
c
b
d

Figure 4.3: A Hasse diagram for a transitive relation.

a Hasse diagram for the partial order, and it is shown in Fig. 4.3. The ordered
pairs of elements for which lines actually appear in a Hasse diagram constitute
the covering relation < for the original relation <. The covering relation is also
called the transitive reduction. The original relation < may be derived from its
covering relation < by taking the “transitive closure” of <. The transitive closure
of any relation is defined to be the smallest reflexive and transitive relation which
includes the relation.

As an example of a partial order, let us consider the inclusion relation on
some set. Let (1 be a universe of objects (i.e., some large set), and let S be the
set of all subsets of (). If we consider any two elements = and y of S, then we
have either t Cyor y C x,or £  y and y € z. It is obvious that C is a partial
order. And thus when we have in LISP the expression (BEAR ISA ANIMAL),
we have an explicit representation of one of the pairs in a partial order on some
set of animal categories.

Suppose that a set of “facts” has been given, each of which is of the form
“an X is a Y,” and that inclusion is the relation expressed in each case. Two
different approaches to the presentation of the set of facts are to store (1) the
transitive reduction (covering relation) and (2) the transitive closure (all original
and implied facts). The advantage of 1 is that less space is generally required
in memory, since fewer graph arcs may be necessary. The advantage of 2 is that
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«~ each fact is explicit and ready, so that less time may be required to respond
L {0 a question regarding the relationship of two entities. Presumably, the time
necessary to deduce that z < y (assuming that z < y is true) depends largely
3 upon the length of the path from z to y in the Hasse diagram. However, if the
¢ransitive closure is stored, one must consider that the additional arcs of the
graph may necessitate additional time in verifying z < y even though the path
length from z to z is only one arc. That is to say, in a graph that is closed with
respect to transitivity, each node is likely to have many neighbors (i.e., a high
b valence), and this high valence may cause some accesses to run more slowly.

4 For cases in which the transitive reduction and transitive closure are almost
E  the same, it makes little difference which of the two representations is used;
' however, in practical situations the two graphs are almost always quite different.
f Depending upon how the search process is implemented, it may be possible
" to achieve a good compromise between the two approaches while holding both
. memory space and search time down. For example, by adding a few “short cut”
arcs to the transitive reduction, expected path length can sometimes be reduced
considerably without any considerable increase in the degree of the graph for the
covering relation, and this can shorten the lengths of some searches; however, it
may lengthen others. Optimal representation of ISA hierarchies under various
assumptions is a subject for research.

4.5 An ISA Hierarchy in LISP

4.5.1 Preliminary Remarks

Knowledge of the inclusion relation among a set of categories is a very useful
kind of information. Inclusion knowledge is instrumental in defining many nouns,
and it can serve as the backbone of a representation system that incorporates
her kinds of knowledge. Even without additional kinds of knowledge, however,
inclusion knowledge can support a variety of types of queries. To illustrate some
qf the possibilities, a LISP program is presented that demonstrates first how the

lation of inclusion can be conveniently represented, then how the information
l;jay be accessed and used for making limited inferences, and finally how these
mechanisms may be integrated into a simple conversational program. Since the
knowledge manipulated by the program is all related to categories of things, we
refer to the program as “LINNEUS.” This LISP program consists of the various

functions that are explained subsequently.
The LINNEUS program is presented by first describing its method for rep-

resenting the ISA hierarchy within the LISP environment. Next, the functions
are given which build these representations. Then we examine the definition
of function ISATEST, which is used for answering queries of the form “(IS A
DUCK A BIRD)". The top-level function, LINNEUS, is the conversational front
end, and it.contains production rules to interpret user inputs and search the ISA
hierarchy.



96 CHAPTER 4. KNOWLEDGE REPRESENTATION

4.5.2 The Use of Property Lists to Store Relations

The property lists of atoms offer a convenient facility for representing relationg

such as inclusion. To represent the set of elements yi,92,...,yx, which are
related to x by relation R, (that is, ¢ R y;,i = 1,...,k), we use an S-expression
of the form

(PUTPROP z (LIST wy; y2 - yx) R).
For éxample, we might have,
(PUTPROP ’ANIMAL °’(DOG CAT BEAR) ’INCLUDES).
The list of classes that ANIMAL includes may then be retrieved by
(GET ’ANIMAL ’INCLUDES).

The information, x R y, is accessible here by using z and R to formulate a GET
expression, and then examining the list of atoms returned, which should contain
y if z R y is true. To make this information accessible more generally, it should
be represented also in two other forms: on the property list of ¥ and on that of
R. This could be accomplished by the following:

(PUTPROP ’DOG °’ (ANIMAL) °®ISA)
which makes ANIMAL accessible from DOG via the ISA link, and

(PUTPROP ’INCLUDES
* ((ANIMAL CAT) (ANIMAL DOG) (ANIMAL BEAR))
’PAIRS)

which makes all the pairs of the INCLUDES relation accessible from the atom
INCLUDES.

In the demonstration program, we use the first two forms: the INCLUDES
property and the ISA property, but not the PAIRS property. Another difference
there is that we wish to add the knowledge gradually as it becomes available from
the user. Thus we use special functions ADDSUBSET and ADDSUPERSET to
put things on the property lists, since we do not want to clobber old information
each time we add new information. These functions are defined in terms of a
helping function ADDTOSET which is like CONS but avoids repeated elements
in a list. The definitions of these functions follow:

(DEFUN ADDTOSET (ELT LST)
(COND ((MEMBER ELT LST) LST) (T (CONS ELT LST)) ))

(DEFUN ADDSUPERSET (ANAME X)
(PUTPROP ANAME (ADDTOSET X (GET ANAME ’ISA)) ’ISA))

(DEFUN ADDSUBSET (ANAME X)
(PUTPROP ANAME (ADDTOSET X (GET ANAME ’INCLUDES)) °’INCLUDES) )
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-‘1 4.5.3 Searching a Base of Facts

F Given a base of facts, “A turbot is a fish,” “A fish is an animal,” etc., repre-
' sented in LISP as explained above, how can questions of the form “Is a turbot
an animal?” be answered? Assuming that what is explicitly represented is a
subrelation of the implied (transitive) one, and that this subrelation is not nec-
essarily transitive, the program should begin a search (for example) for ANIMAL
L from TURBOT. It should look first on the list of things that a TURBOT is (as
E represented on its property list) and if ANIMAL is not found there, on the lists
£ for each entry on TURBOT’s list, recursively searching until either ANIMAL is
L found or all possibilities have been exhausted without finding it, or all alterna-
{ tives to a given depth limit have been exhausted.

i Such a search is performed by the function ISATEST described below:

it b

i (DEFUN ISATEST (X Y N)
¢ (COND ((EQ X Y) T)
((ZEROP N) NIL)
((MEMBER Y (GET X 'ISA)) T)
(T (ANY (MAPCAR
(FUNCTION
(LAMBDA (XX) (ISATEST XX Y (SUB1 N))) )
(GET X ’ISA) D)) ) )

The function ISATEST takes three arguments, X, Y, and N where X and Y
are atoms like CAT and ANIMAL, and N is a non-negative integer giving the
¢ maximum number of levels for the recursive search. The first clause, ((EQ X Y)
- T) tests to see if X is identical to Y and returns T if so. This corresponds to a
earch of depth 0. The next clause tests N for 0 and cuts off the search along
he current branch if so. The third clause, (MEMBER Y (GET X 'ISA)) T)
performs a search of depth 1 from X looking for Y. If this fails, the last clause
k' is tried. In the last clause, searches with maximum depth N—1 are initiated
from each of the atoms appearing on X’s “ISA” list. If any of these succeeds,
SATEST returns T.

For the ISA hierarchy shown in Fig. 4.4, the test (ISATEST 'LOBSTER
ANIMAL 20) succeeds because there is a path from LOBSTER to ANIMAL
: going only upwards, and the length of the path is less than 20.

' The supporting function ANY has the effect of applying the function OR to
its argument list. It may be defined:

(DEFUN ANY (LST)
(COND ((NULL LST) NIL)
((CAR LST) T)
(T (ANY (CDR LST))) ) )

Note that ISATEST could be made more efficient by aborting the remaining
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organism

plant animal

invertebrate

crawler mollusk

crustacean bivalve

lobster shrimp butterfy moth  scallop

Figure 4.4: An ISA hierarchy for which the test (ISATEST 'LOBSTER ’ANI-
MAL 20) succeeds.

subsearches as soon as Y is found in one of the subsearches (this is left as an
exercise).

It may seem that the program might just as well have initiated a search from
Y for X, traversing the inclusion arcs in the opposite direction. The length of
the path from X to Y going forwards is the same as that from Y to X going
backwards. However, the branching of the search may be drastically different
in one case than the other. If X is a leaf node in a tree and Y is the root, it
takes less searching in general to find Y from X than to find X from Y. This is
because there are no choices when moving up a path of the tree. The strategy of
searching forward from the present state or node (e.g., LOBSTER) toward the
goal (e.g., ANIMAL) is called “forward chaining.” The complementary strategy
is to search from the goal back to the initial node or state, and this is called
“backward chaining.” Forward and backward chaining are described further in
Chapter 5.

4.6 A Conversational Front End

The ability to store, retrieve, and perform simple inferences on relational data
can support a variety of question-answering modes. LINNEUS demonstrates
this by interpreting simple statements and questions and then invoking func-
tions to search or manipulate the relational knowledge. The function INTER-
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, PRET (shown below) is the main component of the conversational front end
(human—to—knowledge-base interface). INTERPRET consists of a large COND
} form embedding a number of clauses that are essentially production rules.

2?(DEFUN LINNEUS O ; This is the top-level procedure.
L (PROG O
(PRINT ’(I AM LINNEUS))
3 (PRINT ’(PLEASE GIVE ME INFORMATION OR ASK QUESTIONS))
L LOOP (SETQ TEXTIN (READ)) ; Get a sentence from the user.

(INTERPRET TEXTIN) ; Try to interpret it and act on it.
(GO LOOP) ) ) ; Repeat until user aborts program.
EV(DEFUN INTERPRET (TEXT) ; Here are the production rules...

(COND
: rule for statements such as ‘(a bear is a mammal) ’

((MATCH ’ ((MATCHARTICLE ARTICLE1) (? X) IS
(MATCHARTICLE ARTICLE2)(? Y))

TEXT)
(ADDSUPERSET X Y) ; Create a link from X up to Y
(ADDSUBSET Y X) ; and a link from Y down to X.

(PUTPROP X ARTICLE1 ’ARTICLE) ; Save X’s article
(PUTPROP Y ARTICLE2 ’ARTICLE) ; and Y’s, too.
(PRINT ’(I UNDERSTAND)) ) ; Acknowledge user.

; rule for questions such as ‘(wvhat is a bear)’ ...
((MATCH ’ (WHAT IS (MATCHARTICLE ARTICLE1) (? X)) TEXT)
(SETQ ISAFLAG NIL) ; Default is ‘no information
(SETQ INCLUDEFLAG NIL) ; available’.
(COND ((SETQ Y (GET X ’ISA))
(SETQ ISAFLAG T) ) ; Y is a superset of X.
((SETQ Y (GET X ’INCLUDES))
(SETQ INCLUDEFLAG T) ) ) ; ¢ subset ’.
; Print out a reply based on one of the two relatioms...
(PRINT (APPEND
(LIST (GET X ’ARTICLE)); ‘A’ or ‘AN’,

(LIST X) ; whatever X is,
(COND (ISAFLAG ’(IS)) ; one of the two relationms,
(INCLUDEFLAG
» (IS SOMETHING MORE GENERAL THAN) ) )
(MAKECONJ Y) )) ) ; some things that X is or

; is more general than.

; rule for questions such as ‘(is a bear a mammal)’
((MATCH °’ (IS (MATCHARTICLE ARTICLE1) (? X)
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(MATCHARTICLE ARTICLE2) (7 Y))

TEXT)
(COND ((ISATEST X Y 10) ; Search for Y from X. |
(PRINT ; Reply affirmatively. |

(APPEND °’ (YES INDEED)
(LIST (GET X ’ARTICLE))
(LIST X)
1 (18)
(LIST (GET Y ’ARTICLE))
(LIST Y) )) )
(T (PRINT ’(SORRY NOT THAT I KNOW OF))) ) ) ; Negative.

; rule for questions such as ‘{why is a bear an animal)’ ...
((MATCH ’(WHY IS (MATCHARTICLE ARTICLE1) (7 X)
(MATCHARTICLE ARTICLE2) (? Y))

TEXT)
(COND ((ISATEST X Y 10) ; Is presupposition correct?
(PRINT ; Yes, prepare reply with explanation...

(CONS ’BECAUSE
(EXPLAIN_LINKS X Y) )) ); Create explanation.
(T (PRINT ’(BUT IT ISN’T!))) ) ) ; No, give reply
; indicating that the presupposition is false.

; rule that handles all other inputs:
(T (PRINT ’(I DO NOT UNDERSTAND))) ))

If the user types “(A BEAR IS AN ANIMAL)”, the first production rule will
fire. That is, the pattern:

((MATCHARTICLE ARTICLE1) (7 X) IS
(MATCHARTICLE ARTICLE2) (7 Y))

will match the value of TEXT. The subpattern (MATCHARTICLE ARTICLEI1)
will match A because when the predicate MATCHARTICLE is applied to A the
result is T. The subpattern (? X) will match BEAR and (? Y) will match AN-
IMAL. The action part of this production rule consists of five parts. (ADDSU-
PERSET X Y) causes ANIMAL to be entered onto the list of classes that are
supersets of BEAR. (ADDSUBSET Y X) places the same relational information,
but from the point of view of ANIMAL, on a list for ANIMAL. The next two
subactions cause the articles (in this case A and AN) to be remembered in as-
sociation with the nouns they precede (in this case BEAR and ANIMAL). The
final subaction is to print (I UNDERSTAND), thus confirming the successful
interpretation of the user’s statement.

The second production rule handles user inputs such as (WHAT IS A BEAR).
When the pattern is successfully matched to the input, X is bound to the atom
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k. (here BEAR) whose property list is to be examined. The action again consists
- of several subactions. First, two flags are reset. These flags control the form of
the answer; the answer may report classes which are supersets of the value of
X, or may report classes which are subsets. Thus the response to the question
“above might be (A BEAR IS AN ANIMAL). To the question (WHAT IS AN
ANIMAL), the response might be (AN ANIMAL IS SOMETHING MORE GEN-
ERAL THAN A BEAR). If any supersets of X can be found, then ISAFLAG is
get to T, and the immediate supersets are reported in the answer. If no supersets
are found, the program looks for subsets.

The third production rule accepts queries of the form (IS A TURBOT AN
" ANIMAL). Its action is to search for Y (in this case ANIMAL) starting from
- X (here TURBOT) by invoking the function ISATEST, explained previously. If
 the search is successful, the relationship between X and Y is confirmed with the
. PRINT form. Otherwise the response is (SORRY NOT THAT I KNOW OF).

~ The fourth production rule provides explanations in response to questions
guch as “(WHY IS A TURBOT AN ANIMAL)” and makes use of the function
EXPLAIN_LINKS. Before it does so, however, it uses ISATEST to make sure
hat a TURBOT really is an ANIMAL (or whatever the presupposition expressed
in the question happens to be).

Let us now examine the definitions of the remaining functions for the LIN-
EUS program. The predicate MATCHARTICLE returns T if its argument
matches one of the articles it knows about.

(DEFUN MATCHARTICLE (X)
.(MEMBER X ’(A AN THE THAT THIS THOSE THESE)) )

In order to make a list of the form (DOG CAT AARDVARK) seem more like
English, the function MAKECONJ transforms it into a list of the form (A DOG
AND A CAT AND AN AARDVARK). The latter list is more obviously a con-
unction than the original list.

(DEFUN MAKECONJ (LST)
(COND ((NULL LST) NIL)
((NULL (CDR LST)) (CONS (GET (CAR LST) ’ARTICLE) LST))
(T (CONS (GET (CAR LST) ’ARTICLE)
(CONS (CAR LST)
(CONS ’AND (MAKECONJ (CDR LST))) ) )) ) )

- The function EXPLAIN_LINKS works by checking for a couple of special cases
. and then, assuming neither holds, calling EXPLAIN_CHAIN. The first special
~ case holds when the user has typed a question such as “(WHY IS A HORSE
" A HORSE)” in which case EXPLAIN_LINKS reports the reason: that they are
- identical. The second case holds when there is a single ISA link from X to Y,
* indicating that the fact in question was input by the user, rather than deduced
by the program. LINNEUS would report “BECAUSE YOU TOLD ME SO” in
8uch a case.
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(DEFUN EXPLAIN_LINKS (X Y)

(COND ((EQ X Y) ’(THEY ARE IDENTICAL)) ; 1st special case
((MEMBER Y (GET X ’ISA)) ; 2nd special case
> (YOU TOLD ME S0) )
(T (EXPLAIN_CHAIN X (GET X ’ISA) Y)) ) ); General case

For the general case, the interesting part of the job is done by the recursive
function EXPLAIN_CHAIN, with the help of TELL.

EXPLAIN_CHAIN takes three arguments: X, L, and Y. It gives a report
about the first chain from X to Y that passes through a member of L. If there
is a direct ISA link from X to Y (which is not the case in the top-level call, or
else the second special case of EXPLAIN_LINKS would have held), then EX-
PLAIN_CHAIN returns an explanation of that link, preceded by AND, thus

providing the final part of an explanation onto which other parts can be AP-
PENDed.

(DEFUN EXPLAIN_CHAIN (X L Y)
(COND ((NULL L) NIL) ; L should never be null.
((MEMBER Y L) ; Is this the last 1link?
(CONS ’AND (TELL X Y)) ) ; Yes, precede expl. by AND.
((ISATEST (CAR L) Y 10) ; Does chain go through CAR L?
(APPEND (TELL X (CAR L)) ; Yes, explain this link, etc.
(EXPLAIN_CHAIN (CAR L)
(GET (CAR L) ’ISA)
Y)))
(T (EXPLAIN_CHAIN X (CDR L) Y)) ) ) ; else try next in L.

The function TELL takes care of the simple job of reporting about a single link.

For example (TELL "TURBOT ’FISH) would evaluate to (A TURBOT IS A
FISH).

(DEFUN TELL (X Y)
(LIST (GET X ’ARTICLE) X ’IS (GET Y ’ARTICLE) Y) )

The following illustrates a session with LINNEUS. The user’s inputs are in lower
case.

(linneus)

(I AM LINNEUS)

(PLEASE GIVE ME INFORMATION OR ASK QUESTIONS)
(a turbot is a fish)

(I UNDERSTAND)

(a fish is an animal)

(I UNDERSTAND)

(a fish is a swimmer)

(I UNDERSTAND)
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‘(what is a turbot)

" (A TURBOT IS A FISH)

(vhat is a swimmer)

(A SWIMMER IS SOMETHING MORE GENERAL THAN A FISH)
{is a turbot an animal)

E (YES INDEED A TURBOT IS AN ANIMAL)

. (why is a turbot a swimmer)

(BECAUSE A TURBAQT IS A FISH AND A FISH IS A SWIMMER)
' (why is a turbot a turbot)

. (BECAUSE THEY ARE IDENTICAL)

' (wvhy is a turbot a fish)

~ (BECAUSE YOU TOLD ME SO)

There are a number of interesting extensions which can be made to LINNEUS.
' For example, “HAS” links can be incorporated; these are described in the next
- gection. Other extensions are suggested in the exercises.

4.7 Inheritance

4.7.1 Inheritance from Supersets

With a representation of the inclusion relation on a set of classes based on the
transitive reduction of the inclusion relation (or equally well by the “included by”
relation), we can nicely handle additional relations with relatively little effort.

Let us consider the statements

(A PHEASANT IS A BIRD) and
(A BIRD HAS FEATHERS).

From these we normally conclude that

(A PHEASANT HAS FEATHERS).

That is, because the class PHEASANT is included by the class BIRD, certain
properties of class BIRD are automatically “inherited” by class PHEASANT.

The general rule is: whenever we have x as a member of a set X which is a
subset of a set Y, any property true of any member of Y must also be true of z.
The fact that such a property of x can be determined by looking at Y means that
the fact that z has this property need not be explicitly represented. As with the
transitive reduction of a transitive relation, where it is only necessary to store a
covering relation explicitly, we now may store some properties of classes only at
“dominant” positions in the inclusion hierarchy.
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4.7.2 HAS Links

Like the inclusion relation, the relation we call HAS is transitive. Here we use
HAS to mean “has as parts.” If a man has hands and a hand has fingers then we
can infer that a man has fingers. We might express these relationships as follows

(MAN HAS HAND)
(HAND HAS FINGER)

therefore,
(MAN HAS FINGER).

By avoiding articles and plural forms here, we also avoid some problems of lexical
analysis, which is more a subject in natural language understanding (see Chapter
9) than in the representation of knowledge.

The HAS relation is not only a transitive one by itself, and therefore capable
of being efficiently represented by its transitive reduction, but it also may be
viewed as a property that can be inherited with respect to the inclusion relation
ISA. Let us write X H Y to denote “X has Y”; i.e., members of class X have one
or more members of class Y as parts. For example, HAND H FINGER means
that a hand has one or more fingers. Then we note:

1. f X CY and ZHX then ZHY, and
2.if XCY and YHZ then XHZ.

Rule 1 may be called the rule of “generalizing HAS with respect to ISA,” and
Rule 2 may be called “inheritance of HAS with respect to ISA.”

One can make inferences that involve sequences of these two rules and infer-
ences by transitivity of ISA and HAS. For example, from the list of facts,

(A TURBOT IS A FISH)
(A FISH IS AN ANIMAL)
(ANIMAL HAS HEART)
(A HEART IS AN ORGAN)
(ORGAN HAS TISSUE)
(TISSUE HAS CELL)

we can infer
(TURBOT HAS CELL).

Thus ISA and HAS are two partial orders that interact through the rules of
generalization and inheritance above.
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4.7.3 Multiple Inheritance

When the ISA hierarchy (transitive reduction of the inclusion relation) forms
a tree or a forest (collection of trees) such that each class X has at most one
. jmmediate superclass, then the test to see whether a class X has some property
P is easy to do. Each Y along the path from X to the root of the tree containing
X is examined to see if it has property P. If any does, then X also does, by
inheritance. Inheritance by TURBOT and COD of the property of having scales,
from FISH, is illustrated in Fig. 4.5.

FISH (HAS SCALES)

TURBOT CcOoD

Figure 4.5: Inheritance of HAS relationships.

A more complicated search is required when each class may have more than
one immediate superclass. This is to say, the covering relation branches upwards
as well as downwards in the general case. The search for a property P must
‘generally follow each upward branch until P is found or all possibilities are
exhausted.

The possibility of multiple inheritance increases the potential for conflicting
inherited values. Consider the example shown in Fig. 4.6. A decoy may be

BIRD

WOODEN OBJECT
ROBIN DUCK

DECOY

Figure 4.6: Multiple inheritance.

considered to be a kind of duck and in turn, a bird. It is also a kind of wooden
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object. As a duck, it has a bill, a head and a body. This is quite appropriate.
As a bird, however, it ought to have a beating heart and be able to fly. But ag
a wooden object, it should not have a beating heart, nor should it be able tg
fly. The resolution of conflicts such as these may be difficult. In this particular
case it is not; since a decoy is not truly a duck, the link between DECOY and
DUCK should not be an inclusion link but a link such as RESEMBLES. A link
of resemblance might only be allowed to pass inherited traits of certain types
such as traits of appearance.

Generally speaking, properties are inherited from superclasses (i.e., along ISA
arcs). However, they are not inherited along HAS arcs. Obviously the following
“inference” is invalid:

(MAN HAS HAND)
(HAND SHORTER_THAN ONE_METER)

“therefore”
(MAN SHORTER_THAN ONE_METER).

Clearly one cannot treat HAS links in exactly the same manner as ISA links.

4.7.4 Default Inheritance

There are some domains of knowledge in which exceptions to general rules exist.
For example, it is usually useful to assume that all birds can fly. Certain birds
such as the ostrich and the kiwi, however, cannot fly (even though they really
are birds, unlike wooden decoys). In such a case it is reasonable to use a rep-
resentation scheme in which properties associated with atoms in a hierarchy are
assumed to be true of all subclasses, unless specifically overridden by a denial or
modification associated with the subclass. For example, see Fig. 4.7.

Under such a scheme, the fact that a woodpecker can fly is made explicit by
following the (short) path from WOODPECKER to BIRD and finding there the
property (CAN FLY). On the other hand, starting from OSTRICH, the property
(CANNOT FLY) is found immediately, overriding the default which is further
up the tree.

Although inclusion (ISA) hierarchies often provide a conceptual organization
for a knowledge base, they give immediate support to inferences of only a rather
limited sort. The inferences involve either the transitivity of the inclusion relation
or the inheritance of properties downward along chains in the hierarchy. An
inclusion hierarchy provides a good way to organize many of the objects and
concepts in a knowledge base, but it does not provide a representation scheme
for non-inclusion relationships, for logical or numerical constraints on objects or
for descriptions of the objects.

One way to build an ISA hierarchy into a more powerful structure is to
add many different kinds of links to the system. We have already seen ISA, IN-
CLUDES, and HAS links. Some more that can be added include ELEMENT_OF
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ANIMAL

MAMMAL BIRD (CAN FLY)

WOODPECKER WREN OSTRICH (CANNOT FLY)

Figure 4.7: Default properties and exceptions.

~and OWNS. A data structure consisting of nodes which represent concepts or
.objects, together with labelled arcs representing relationships such as these, is
talled a “semantic network” (or “semantic net” for short). Semantic nets are
Iidescribed later in this chapter.

In order to provide a general capability for representing many kinds of rela-
ions (rather than just inclusion and other binary relations), we turn to mathe-
atical logic.

4.8 Propositional and Predicate Logic

{4.8. 1 Remarks

 Mathematical logics are appropriate for representing knowledge in some situa-
+tions. Two logics are commonly used. The propositional calculus is usually used
in teaching rather than in actual systems; since it is essentially a greatly simpli-
fied version of the predicate calculus, an understanding of propositional calculus
is a good first step toward understanding the predicate calculus.

On the other hand predicate calculus (or predicate logic) is often used as a
means of knowledge representation in Al systems. Predicate logic is the basis for
“logic programming” (as permitted by the programming language PROLOG, for
example), and many specialists regard it as the single most important knowledge
representation method. As we shall see, the predicate calculus is quite powerful
but still has some serious shortcomings.
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4.8.2 Propositional Calculus

Here we present a brief summary of the propositional calculus, its use in repre-
senting statements, and some simple ways in which the representations can be
manipulated.

Let X represent the statement “it is raining today.” Let Y represent the
statement “the picnic is cancelled.” Then the expression

XAY

represents the statement “it is raining today and the picnic is cancelled.” The
expression

XvY
stands for: “it is raining today or the picnic is cancelled.” The expression
X=Y

[means “if it is raining today then the picnic is cancelled.” The negation of X is
written

-X

Jand means “it is not raining today,” or equivalently, “it is not the case that it is
raining today.”

The symbols X and Y used here are called propositional symbols because
each represents some proposition. The symbols

/\? V’$7<:>’_‘

are called connectives because they generally connect pairs of propositional sym-
bols. An exception is — which is a unary operator; although it is associated with
only one propositional symbol, we still refer to it as a connective. The other
connectives are binary operators.

The syntax of propositional calculus expressions can be formally described
using Backus-Naur form (which may be regarded as a shorthand way of writing
grammar production rules).

(exp) ::= (prop symbol)

(constant)

= - {exp)

= ({exp) (binary op) (exp))
(prop symbol) ::= P|Q|R|X|Y|Z

(constant) x=T|F

(binary op) =AV|=>|e
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entheses may be omitted when the association of connectives with subexpres-
ns is clear or is ambiguous but inconsequential.

Given an expression such as ((X AY) = Z), if we know the truth values for
sach of the propositions represented by X,Y, and Z, we can mechanically deter-
E mine the truth value of the whole expression. Suppose that X and Y are each
true, and Z is false. Then the overall expression’s value becomes successively:

(TAT)=F)
(T=F)
F.

The whole expression is false in this case. The rules for evaluating expressions
are easily given in truth tables:

XY |- X|XAY | XVY | X=Y
T{T}| F T T T
T|F| F F T F
F|T| T F T T
F|F| T F F T

There are important things we can do with expressions of propositional cal-
us without needing to know whether the component propositions are true or
se. That is, if we assume that some expressions are true, we can derive new
es which are guaranteed to be true if the assumptions are. To obtain new
ﬁcpressions which logically follow from the starting expressions we use one or
inore rules of inference. Some important rules of inference are stated below.

1. Modus Ponens:

Assume: X =Y
and X
Then: Y

For example, suppose we know that if it snows today then school will
be cancelled, and suppose we also know that it is snowing today. Then,
by the rule of modus ponens, we can logically deduce that school will be
cancelled today.

2. Disjunctive Syllogism

Assume: X
Then: XvY

For example, suppose that you own a car. Then you can truthfully say
that you either own a car or live in a 17th century castle (regardless of
whether or not you live in any castle).
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3. Resolution

Assume: X VY
and -XVvZ
Then: YvZ

For example, suppose that either John passes his final or John goes into
seclusion. Suppose further that either John flunks his final or he misses
Paula’s pre-finals party. We can conclude that either John goes into secly-
sion or he misses Paula’s pre-finals party.

Resolution is very important in automatic theorem proving and logical rea-
soning. In Chapter 6 we will see a more flexible kind of resolution in the predicate
calculus.

Certain kinds of propositional calculus expressions deserve special names.
An expression which is always true, no matter what assumptions one may make
about the propositions represented, is a tautology. The expression X V X is
a tautology. An expression which is always false (i.e., can never be true) is a
contradiction. For example X A —X is a contradiction. An expression which is
not a contradiction is said to be satisfiable.

The propositional calculus is very limited as a method of knowledge repre-
sentation. Perhaps its primary use is in studying some aspects of the predicate
calculus, which is much more powerful.

4.8.3 Predicate Calculus

One generally needs more expressive power in a knowledge representation lan-
guage than is offered by the propositional calculus. There, one must build upon
propositions, and one cannot “get inside” a proposition and describe the ob jects
which make up the proposition. The predicate calculus, on the other hand, does
allow one to work with objects as well as with propositions.

Because of its generality and the direct way in which it can support automatic
inference, predicate calculus is probably the single most important method for
knowledge representation.

Here we present the basics of the predicate calculus. This form of knowledge
representation will be used in Chapter 6 in the discussions there of theorem
proving and logic programming.

An expression in the predicate calculus is much like one of propositional
calculus to which more detailed descriptions have been added. Where one might
use the symbol P in the propositional calculus to represent the statement “the
apple is red,” in the predicate calculus, one separates the predicate (quality of
being red) from the objects (or subjects, here the apple), and writes:

R(a)
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%r more explicitly,
: Red(Apple).

Here, the symbol “Red” is a predicate and “Apple” is a constant that represents
L a particular object in a domain or universe of objects.

. As another example, the propositional calculus doesn’t provide a way to refer
to specific objects within statements such as “the golden egg” in “The golden egg
is heavy.” On the other hand, the predicate calculus does provide for symbols to
represent objects and then allows these to be used as components of statements.
r example, the constant symbol a may refer to a particular golden egg and a
edicate symbol P may assert that something is heavy. The statement P(a)
then could state that the golden egg is heavy. The constant symbols a, b, c, ...
used in the predicate calculus to denote particular objects in some domain.
he predicate symbols P,Q, R,. .. are used to denote qualities or attributes of
pbjects or relationships among objects that are either true or false. For example
D(z,y) might assert that x is less than y in some domain of numbers such as the
s. Function symbols f, g, h, ... denote mappings from elements of the domain
for tuples of elements from the domain) to elements of the domain. For example,
P(a, f(b)) asserts that predicate P is true on the argument pair “a” followed by
e value of the function f applied to b. Logical connectives are the same as in the
ppositional calculus. Variable symbols z,y, z, x1, ¢2, etc. represent potentially
element of the domain and allow the formulation of general statements about
y elements of the domain at a time. Two quantifiers, V and 3, may be used
o build new formulas from old. For example 3z P(z) expresses that there exists
it least one element of the domain that makes P(z) true.

The rules for building up syntactically correct formulas are as follows:

1. Any constant or variable taken by itself is a term.

2. Any n-place function applied to n terms is a term.

3. Any n-place predicate applied to n terms is a well-formed formula.
4

. Any logical combination of well-formed formulas is also a well-formed for-
mula. (All the logical connectives of the propositional calculus may be
used.)

5. Any well-formed formula F' may be made into another well-formed for-
mula by prefixing it with a quantifier and an individual variable; e.g.,
Vz(F). Parentheses should be used when necessary to make the scope of
the quantifier clear.

¢ The predicate calculus can be a convenient representation for facts and rules
 of inference, provided that a suitable set of functions and predicates is available
k. with which to build formulas.

' Predicates readily represent relations such as inclusion. For example,
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Isa(Bear, Mammal).

The predicate calculus is an attractive representation mechanism for knowledge
in Al systems because well-known techniques of logical inference can easily be
applied to such a representation. One thing the predicate calculus does not
provide is any particular set of given predicates with meanings, or functions
or domain. These must be provided by the knowledge engineer in developing
predicate calculus representations for knowledge.

The predicate calculus can be used to formalize the rules for inheritance that
were discussed earlier in the chapter. Let us reconsider the specific syllogism: “A
pheasant is a bird, and a bird has feathers implies that a pheasant has feathers.”
In general, when we have X CY and Vy € Y, P(y), then we can infer Vz € X,
P(z). Since Yz € X, P(z) is derivable from X C Y and Vy € Y, P(y), it
need not be explicitly represented. (Logical inference techniques are discussed
in Chapter 6.)

4.9 Frames of Context

Another problem with predicate calculus as a representation scheme is that it
does not provide a means to group facts and rules together that are relevant
in similar contexts. Such groupings may not be necessary in small knowledge
bases. However, a lack of overall organization in large bases can have costly
consequences. In order to provide organizational structure, various methods
have been proposed including “partitioned semantic networks” (described later)
and “frames.”

By providing the knowledge in modules called “frames,” the designer makes
life easier for the algorithms that will access the knowledge. A frame is a collec-
tion of knowledge relevant to a particular object, situation, or concept. Generally
there are many pieces of information in each frame, and there are many frames in
a knowledge base. Some frames may be permanent in the system; others may be
created and destroyed during the course of problem solving. The term “frame”
appears to be borrowed from physics, where it usually refers to a coordinate
frame or frame of reference in three-dimensional space. It suggests a concern
with a subset of the universe, from a particular point of view.

A frame provides a representation for an object, situation, or class in terms
of a set of attribute names and values for the attributes. A frame is analogous
to a LISP atom with its property list, or to a “record” data type in PASCAL.

4.9.1 A “Kitchen” Frame

Let us suppose that we are designing a household robot. This robot should do
useful things such as vacuum the living room, prepare meals, and offer drinks to
the guests. If we ignore the mechanical aspects and consider only the problem of
designing the knowledge base for this robot, we must find an overall organization
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for it. The robot should know about the living room and the things which
L are likely to be found there, such as the living room furniture. It should also

know about the kitchen and all the key appliances there: stove, fridge, garbage
disposal, dishwasher, and possibly fire alarm. Since our robot is to be designed
pot for one particular house but many, its knowledge base should not presuppose
exact locations for these things. The exact coordinates for each item could be
established at the time the robot is installed or delivered. A reasonable way of
organizing such a knowledge base is according to the rooms of the house. We
get up one module (frame) for each room. There can be a frame for the living
‘room, a frame for the bathroom, a frame for the kitchen, etc. Our next step is
to design each frame.

4.9.2 Slots and Fillers

A frame commonly consists of two parts: a name and a list of attribute-value
irs. The attributes are sometimes called “slot names” and the values called
“fillers.” Therefore a frame is a named collection of slots and the fillers associated
with the slots. A frame can easily be represented in LISP using an atom for the
- frame name and part or all of its property list to hold the attribute-value pairs.
or a kitchen we might have a frame as shown in Fig. 4.8.

slot name filler
frame name: KITCHEN-FRAME
FRIDGE_LOC (35)
DISHWASH_LOC | (4 5)
STOVE_LOC (54)
PANTRY_LOC NIL

Figure 4.8: A frame representing a kitchen and its attributes.

It may be that a slot is to be filled with the name of another frame, or a
t of other frames. If we add a slot named “ADJACENT_ROOMS” to the
ITCHEN frame, it might get as value (DINING_ROOM BACK_HALL CEL-
- LAR_STAIRS). The interlinking of frames to one another creates a network that

can be viewed as a semantic network. (However, the term “semantic network”
-is applied to a large variety of relational knowledge bases.)

4.9.3 Schemata

Often a frame is associated with a class of objects or a category of situations.
For example, a frame for “vacations” may provide slots for all the usual impor-
tant features of a vacation: where, when, principal activities, and cost. Frames
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Schema name;

standard slots:

] I
principal activity: [ |

cost{ |

J

Instance name: My vacation 87

intanc of.

Instance name: John's vacation

Instance of: | Vacation

standard slots:

where:
when: { Jan. 1-7, 1987
principal activity: | snorkeling

cost{ $850

standard slots:

where:

Dec. 1986

principal activity: | skiing

cost{ $575

when:

_I

Figure 4.9: A schema and two instances of it.

for particular vacations are created by instantiating this general frame. Such
a general frame is sometimes called a schema, and the frames produced by in-
stantiating the schema are called instances. The process of instantiating the
schema involves creating a new frame by allocating memory for it, linking it to
the schema, such as by filling in a special “instance-of” slot, and filling in the
remaining slots with particular information for the vacation in question. It is
not necessary that all the slots be filled. The relationship between a schema and
two instances of it is shown in Fig. 4.9.

Each schema in a collection of schemata gives the general characteristics
which pertain to a concept, class of objects or class of situations. Therefore, a

schema acts as a template or plan for the construction of frames for particular
objects or situations.

4.9.4 Attachments to Slots

A slot may be provided with a default value and/or information related to the
slot. Since such information is neither the value of the slot (which is “filled
in”) nor the name of the slot, the associated information is said to be attached.
Attached information may be of kinds such as the following:
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1. a constraint that must be satisfied by the filled-in value for the slot.

9. a procedure that may be used to determine the value for the slot if the
value is needed (this is called an if-needed procedural attachment).

3. a procedure that is to be executed after a value is filled in for the slot (this
is called an if-added procedural attachment).

By attaching procedures or constraints to slots, frames can be made to represent
many more of the details of knowledge relevant to a problem, without losing
their organizational effectiveness.

4.10 Semantic Networks

4.10.1 Motivation

Earlier in this chapter it was suggested that ISA hierarchies could be extended
into more general “semantic networks” by adding additional kinds of links and
nodes. In fact, such linked data structures have been used often to represent cer-
§ tain kinds of knowledge in Al systems. In this section, we present the rationale,
§ methods, and an evaluation of semantic networks as an approach to knowledge

Semantic networks were first developed in order to represent the meanings
of English sentences in terms of objects and relationships among them. The
¥ neural interconnections of the brain are clearly arranged in some type of net-
work (apparently one with a highly complex structure), and the rough similarity
between the artificial semantic nets and the natural brain helped to encourage
the development of semantic nets. The notion of accessing semantic informa-
tion through a kind of “spreading activation” of the network, analogous to brain
activity spreading via neurons, is still an appealing notion.

There are some more practical aspects to semantic nets, also. There is an
efficiency to be gained by representing each object or concept once and using
pointers for cross references, rather than naming an object explicitly every time
it is involved in a relation (as must be done with the predicate calculus, for
example). Thus it is possible to have very little redundancy in a semantic net.
Not only can we get an efficiency in space, but search time may be faster as well;
because the associations between nodes are represented as arcs in a graph, it is
Possible to use efficient graph-search methods to locate desired information. If
the network structure is implemented with an adjacency list scheme, a search
is likely to be much faster than if a long list of relationships has to be scanned
every time an association is followed.

Semantic networks can provide a very general capability for knowledge repre-
sentation. As we shall see, they can handle not only binary relations, but unary
and higher-order relations as well, making them, in theory, as powerful as the
predicates of the predicate calculus.
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Unlike the predicate calculus, however, there is no standard semantic net.
work, reasoning methods are not provided by the techniques themselves, and
semantic net support for universally or existentially quantified statements is ei-
ther not provided, nonstandard or messy. On the positive side, the semantic net
approach is clearly valuable for providing a graphical way for the AI researcher
or system designer to view knowledge, and it often suggests a practical way of
implementing knowledge representations.

4.10.2 Representing Sentence Semantics

ordinary sentences, it is appropriate to consider an example in that vein.

Perhaps the simplest way to design semantic networks to represent sentences
is first to restrict the allowable sentences to certain kinds that use only nouns,
verbs and articles. Then one can set up a network node for each noun (including
its article, if any) and a link for the verb. Such a net for the sentence “Bill killed
the company” is shown in Fig. 4.10.

Since semantic nets were originally developed for representing the meanings of '
1
|
\
|

killed the

Bill company

Figure 4.10: Simple semantic net for “Bill killed the company.”

It is true that much can be done with such representations, as the LINNEUS
program illustrates. Unfortunately, however, relatively few of the sentences we
use are simple enough to be represented this way. Many verbs, for example, take
both a direct object and an indirect object. Consider the sentence “Helen offered
Bill a solution.” Here the direct object is “a solution” and the indirect object
is “Bill.” In order to associate all three nouns and the verb, it is appropriate to
create a node in a semantic net for the verb as well as each noun, and then to
link the verb to each noun with an arc labelled with the relationship of the noun
to the verb. In this case, the indirect object, Bill, plays the role of recipient of
the offer (see Fig. 4.11).

If this fragment of a semantic net is to be a part of a large one representing
the many aspects of a complicated story or situation, the nodes of the fragment
are likely to duplicate existing nodes. If the repeated nodes are simply merged,
there may be problems. For example, if the larger net also contains a similar
representation of the sentence “David offered Bob a ride home,” then merging
the “offered” nodes would confuse the two offering events, possibly allowing the
erroneous inference of “Helen offered Bob a ride home.”
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offered

recipient

Figure 4.11: A semantic net for “Helen offered Bill a solution.”

The situation is much improved if the specific offering events are represented
as separate nodes, each of which is an instance of a general node representing the
class of all offering events. Similarly, if there is another “solution” node in the
- network, it probably represents a different solution from the one Helen offered.
Thus the noun phrase “a solution” should also be represented as an instance
‘node linked to a node representing some class. It would be desirable for the sake
“of consistency for each particular nominal in the sentence to be represented as
an instance. This leads to the net in Fig. 4.12.

Representing adjectives and prepositional phrases can be handled with ad-
"ditional nodes and links. For the example with an adjective: “The armagnac
is excellent” a node for the attribute “excellent” is set up and a link labelled
" “quality” may be used (as in Fig. 4.13).

A prepositional phrase modifying a noun may be represented by a node for
he nominal object of the preposition, pointed to by an arc from the noun that is
modified, the arc being labelled with the relationship specified by the preposition.
~Thus for “the motor in the robot’s wrist is dead” we have the net of Fig. 4.14.

It is not necessarily easy to build a useful semantic net representation for
a sentence. Even when one is provided with a good set of class nodes and arc
labels, it can be unclear which nodes and arc types to use, and how much of
a sentence’s meaning should be represented explicitly. Let us now consider a
slightly more complicated sentence: “Laura traded her car for Paul’s graphics
board.” A net for this is shown in Fig. 4.15.

The sentence suggests that Laura took the initiative in the trade. However,
it is usual for a trade to be a cooperative activity, so that it would make sense to
have an additional link from “Event#793” to “Paul” with the label “co-agent.”
But, since the sentence does not begin with “Laura traded with Paul,” it appears
to be safer not to infer that Paul was an active participant in the event.

This example contains another case that is difficult to decide. The sentence
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offering
event

instance of

instance of

solution
#317

instance of

recipient

person

instance
of

Figure 4.12: A net with class and instance nodes for “Helen offered Bill a
folution.”

akes clear that Laura was the owner of a car. Should an “owned” link be
stablished from “Laura” to “car”? One problem with putting in such a link
the time-dependent nature of the truth of the fact it represents. After the
ade was completed, Laura no longer owned the car. Anyway, the ownership
information is implicit in the net because the node for the particular event is
Knked both to “Laura” and to “car” with appropriate labels on the arcs.

One thing that should be clear from this example is that there is a problem
oncerning time. In the representation of an event, one generally cannot repre-
dent the state of things before the event and the state of things after the event
onsistently without some kind of separation of representations. One way of
maintaining consistency without physically separating the representations is to
1dd temporal information to some or all of the links in a net. Then one could put
. link between “Laura” and “car” with the label “owned before event#793” and
L link between “Laura” and “graphics board” labelled “owned after event#793.”
[his certainly complicates the representation of the links and is likely to slow
lown some inferences.

Should a semantic net represent the current states of the relevant objects
r their histories or both? This depends on the kinds of inferences a system is
upposed to make. If a system is to be able to answer questions such as, “What
was the relationship between the defendant and the victim at the time of the
rime?” then clearly temporal information must be incorporated. On the other
hand, if a robot is expected only to be able to navigate through a room, and
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instance of

excellent
Armagnac excellent

Figure 4.13: A net with an attributive node.

can see where all the obstacles are, it probably doesn’t have to keep track of the
history of its environment; it only needs to represent the current state of the
environment it finds itself in.

.10.3 Representing Non-Binary Relations

t first glance, semantic networks appear to be more effective in representing
named binary relations (i.e., two-place predicates) than other kinds of relations.
or example, Isa(dog, mammal) is represented as in Fig. 4.16. It should be made
lear, however, that semantic networks are not limited in this respect; they can
epresent an n-ary relation with no loss of information. For example, consider
the quaternary relationship expressed by the four-place predicate gives(John,
Mary, book, today). A net representing this can be constructed with a node for
the predicate symbol, a node for each argument, and an arc from the predicate
node to each argument node labelled with the place number of the argument (as
in Fig. 4.17). Of course, there may be more appropriate names for the arc labels
han “place 1,” etc. In this case, a better set of labels would be agent, recipient,
bject, when. The one disadvantage of using semantic nets to represent n-ary
relations is that there is some overhead that results from the need to create these
new arc labels.

4.10.4 Semantic Primitives and Combining Forms

: The basic concepts necessary to represent everyday experiences are called “se-
~ Mantic primitives.” Semantic primitives must be adequate for representing such
- things as events, stories and situations. Systems of such primitives have been
* proposed by Schank and by Wilks. Typically, each primitive is either an entity
~ such as a man, a thing, or a part of another entity, an action such as to fly, to be,
. or to want, a case such as “on behalf of,” “surrounding” or “toward,” a qualifier
; such as “good,” “much,” or “unfortunate,” or a type indicator such as “how,”
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instance of

liveness
instance of
robot wrist
#2
instance of

robot wrist

Figure 4.14: A net with a representation of a prepositional phrase.

which indicates that a related phrase modifies an action, or “kind” which indi-
cates that a related phrase modifies an entity. A deeper treatment of semantic
primitives is given in Chapter 9 as a basis for natural language understanding.

4.11 Constraints

A method for representing knowledge that is based on the predicates of predicate
calculus, but that is augmented with procedural information, is “constraints.”
A constraint is a relationship between two or more items, which the system, in
the course of solving a problem, must attempt to satisfy or keep satisfied.

4.11.1 Constraint Schemata

A constraint may be represented simply as a predicate of predicate calculus.
However, it has proved useful to represent constraints as instances of “generalized
constraints” or constraint schemata. A constraint schema may be represented
by giving it a name, listing the formal parameters that represent the parts of
each constraint modelled by the schema, and listing rules that allow any one of
the parameters to be computed when the others are known.

An example of a constraint schema. is the following one which could be used
to represent Ohm’s law in an electronics problem-solving system.
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trading
event

instance of

instance of

instance of

agent

object 1 object 2

car
#5918

instance of

graphics
bd. #7112

instance of

graphics bd.

Figure 4.15: A net for “Laura traded her car for Paul’s graphics board.”

(CONSTRAINTS OHMS_LAW
(PARTS (VOLTAGE CURRENT RESISTANCE))

(RULES
(TAKE VOLTAGE (TIMES CURRENT RESISTANCE))
(TAKE CURRENT (QUOTIENT VOLTAGE RESISTANCE))
(TAKE RESISTANCE (QUOTIENT VOLTAGE CURRENT))
))

This constraint would make it easy for the current to be computed in a circuit
if the voltage and resistance were known. Note that the constraint provides the
knowledge in a form that can be used not just in updating a predetermined vari-
able when the others change, but for whichever variable may have an unknown
value at some time when the other variables have known values.

It is possible to make a constraint representing Ohm'’s law that is yet more
useful by adding rules that allow updating with knowledge of only one variable,
when that variable has the value zero and the variable is either CURRENT or

RESISTANCE.
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MAMMAL

ISA

DOG

v Figure 4.16: Semantic net for a named binary relationship.

gives
place 1 place 2 place 3 place 4
John Mary book today

Figure 4.17: Semantic net for a four-place relationship.

(CONSTRAINTS OHMS_LAW
(PARTS (VOLTAGE CURRENT RESISTANCE))

(RULES
(IF (EQUAL CURRENT 0) (TAKE VOLTAGE 0))
(IF (EQUAL RESISTANCE 0) (TAKE VOLTAGE 0)
(TAKE VOLTAGE (TIMES CURRENT RESISTANCE))
(TAKE CURRENT (QUOTIENT VOLTAGE RESISTANCE))
(TAKE RESISTANCE (QUOTIENT VOLTAGE CURRENT))
))

Both representations suffer from the problem that division by zero is not
prevented. This could be fixed by modifying the last two rules, and is left as an
exercise for the reader.

4.11.2 Using Constraints

In order to use a constraint schema such as this one in representing a complex
situation, one or more instances of it may be used in conjunction with instances
of other such schemata, and the instances may form a “constraint network.”
An example is shown in Fig. 4.18. This diagram represents an electronic-circuit
problem in which one voltage and two resistance values are given, and the ob ject
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12V

Figure 4.18: Constraint network for an electronic circuit.

* is to determine the voltages and currents Vi, Vs, I; and I,. The constraints for
his problem, expressed as ordinary equations, are as follows:

Vo = 12 R, = 80
Ry, = 40 Vo = IyRy
i = LR, Vo = LR,
Iy =1 L = I,
Ry = Ri+ Ry

As instances of constraint schemata, the constraints are the following:

(INITIAL VO 12)

(INITIAL R1 80)

(INITIAL R2 40)

(OHMS_LAW VO IO RO)
(OHMS_LAW V1 I1 R1)
(OHMS_LAW V2 I2 R2)
(SERIES_CURRENT I0 I1)
(SERIES_CURRENT I1 I2)
(SERIES_RESISTANCE RO R1 R2)

The designing of suitable representations for the schemata INITIAL, SE-
. RIES_CURRENT, and SERIES_RESISTANCE is left as a series of exercises
~ for the reader.



124 CHAPTER 4. KNOWLEDGE REPRESENTATION

4.11.3 Satisfying Constraints

Constraints are most frequently used as part of the representation of a problem_
In the example of Fig. 4.18, the problem of finding the current through R1 may
be solved by an iterative constraint-satisfaction procedure. Such a procedure
repeatedly finds a variable for which the variables on which it depends have
defined or updated values, and it computes a new value. If all constraints are
satisfied, the procedure halts, and if the procedure ever detects that it is making
no progress, it also stops. Sets of constraints may be inconsistent and thus have
no solution. In some cases, a set of constraints may have a solution, but existing
methods of constraint satisfaction are inadequate for finding it. Constraint-
satisfaction procedures can be quite involved, and they continue to be a subject
of active research.

Constraints have been most successful in representing numerical relation-
ships. However, they have also been used successfully in combinatorial relation-
ships involving finite sets of objects or labels. In such a situation, they may be
used to filter out particular combinations of labels or partial states to arrive at
a solution. Visual scene analysis and natural language understanding are two
areas where combinatorial constraints have been useful.

4.12 Relational Databases
4.12.1 Remarks

It would do justice neither to AI nor to the field of database systems to omit
relational databases from a serious survey of knowledge representation methods.
Database techniques, while they have not been widely used in AI experiments,
are fairly mature, well understood and are now being brought into Al systems.
The relational database approach is particularly good at handling large, regularly
structured collections of information. As with other representation methods, re-
lational databases are set up to store some relationships explicitly and to permit
implicit relationships to be recovered through computation. Capability for cer-
tain useful transformations is generally provided by relational database systems;
selection, projection, and joining, for example, are common. These can be used
both for access to and, to a limited degree, for inference on the database. How-
ever, these operations may be used in connection with more powerful inference
methods (such as resolution in the predicate calculus) to attain a combination
of intelligence and efficiency in a knowledge-based system.

4.12.2 n-ary Relations

Database management systems frequently are based on the “relational ap-
proach.” A relation in the database sense is more general than the binary rela-
tions that we discussed in Section 4.4 on concept hierarchies. Rather than a set
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f ordered pairs, when talking about relational databases, the term “relation”
fers to a set of ordered n-tuples, where n may vary from one relation to the
pext. For example, a 3-ary relation is the following:

{(a,a,b),(a,c,d),(d,c,d),(d,c,e)}.

It is customary to display such relations in tabular form:

olojo|w
olal o

oAl el

' In an n-ary relation there are n “fields.” [Each field has a name and a “domain.”
The domain is the set of values from which elements in the field may be drawn.
" The first field is sometimes called the primary key of the relation. Not only
do the fields have names, but the entire relation usually has a name also. For
. example, consider the relation “Angiosperms” shown in Fig. 4.19.

ANGIOSPERMS
Plant name | General Form | Seed body | Products
Wheat Grass Grain Bread
Corn Grass Kernel Meal
Potato Tuber Eye Fries
Oak Tree Acorn Floors
Oak Tree Acorn Desks

Figure 4.19: A relation in a relational database.

The relational method is convenient insofar as certain standard operations
on relations tend to be supported by database management systems. The oper-
ations are useful not only for querying and updating the database, but also for
extracting subrelations, and merging relations to form composites.

It is interesting to note that binary and ternary relations can be easily repre-
sented in LISP using the property lists of atoms. Relations of higher order can
also be represented in LISP as lists of tuples which are themselves lists.

- 4.12.3 Selection

- With the relation in Fig. 4.19 we ought to be able to find the answer to a question
* such as: “What is the name of each angiosperm which is a grass?” The procedure
-~ is simply to scan top-to-bottom looking at the “general form” attribute of each
tuple, and whenever the value “grass” is found, output the value of the “Plant
name” field in the same row. A somewhat more general formulation of this kind
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of process is the following: the selection from an n-ary relation R according tq
a predicate P(z,,...,z,), is a new relation R’ which is a subset of R, each of
whose tuples satisfies P. The effect of a selection, therefore, is to extract some
(and possibly none or possibly all) of the rows of R. Of course, the predicate p
can be designed to ignore most of its arguments, and if it is understood which
argument a unary predicate is to be applied to, it is not necessary to specify an
n-ary one.

4.12.4 Projection

In a relation having n fields, it may be the case that only k of them are relevant to
a particular application. A new relation, generally smaller than the original, can
be obtained by making of copy of the original, but deleting the fields that are not
wanted. At the same time, any duplications in the set of k-tuples thus formed
are removed. For example, projecting the relation ANGIOSPERMS above, with
respect to the first two fields, yields the new relation R2 shown in Fig. 4.20.

R2
Plant name | General Form
Wheat Grass
Corn Grass
Potato Tuber
Oak Tree

Figure 4.20: The projection of “Angiosperms” onto “Plant name” and “General
form.”

The effect of projection is to extract one or more columns of the table rep-
resenting the relation, and then to remove any redundant rows. Projection is
analogous to selection, except in this possibility of having to remove redundant
TOWS.

4.12.5 Joins

Two relations can be combined by the join operation if they share one or more
common domains—that is, one can find a column in one relation whose elements
are drawn from the same set as those in some column of the other relation. In
such a case, the join is obtained by finding all “compatible pairs” of tuples and
merging such pairs into longer tuples. A tuple from one relation is compatible
with a tuple of the other relation if for each shared domain the first tuple’s value
matches the second tuple’s value. In the tuples of the join, each shared field is
represented once, so that length of a tuple of the join is strictly less than the
sum of the lengths of the tuples used to produce it. Note that any tuple in one
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3 of the two initial relations does not participate in the join if its values in the
common fields do not match those of some tuple in the other relation. Consider

R3
General Form | Size
Grass Small
Tree Large
Bush Medium

Figure 4.21: A two place relation containing a field “size.”

the relation R3 shown in Fig. 4.21. The join of R2 with R3 is the relation R4,
shown in Fig. 4.22. If one starts only with R2 and R3, then the join of R2 and

R4
Plant Name | General Form | Size
Wheat Grass Small
Corn Grass Small
Oak Tree Large

Figure 4.22: The join of R2 and R3.

R3 is required before selection can be applied for answering the query: “What
are the names of the small plants.” This is because selection must be applied
to a relation that contains both the “plant name” field and the “size” field, in
order to obtain the answer to the question.

The relational approach to knowledge representation does not seem as ap-
- propriate for complicated semantic knowledge of the sort that could support
dialogs in natural language, as other schemes such as those organized by frames
or by class hierarchies. Although the relational approach is general enough to
represent anything, the operations typically available (projection, join and some
others for updating relations), are not very helpful for solving problems and
making inferences.

On the other hand, relational databases do well at handling bulky bodies
of information that have regular, homogeneous structure, and they can well be
useful as components of intelligent information systems.

4.13 Problems of Knowledge Representation

Some of the problems for knowledge representation have already been mentioned:
handling defaults and exceptions, explicit vs. implicit representations (e.g., tran-
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pitive closures vs. transitive reductions). Here, some additional problems are dis-
cussed. These problems are related to the quality, completeness, and acquisition
bf knowledge.

#.13.1 The Closed-World Assumption

[t is difficult to believe that a doctor knows everything there is to know about
reating a common cold. There are lots of aspects of viruses that scientists,
et alone doctors, do not understand that might be relevant to treating colds.
Bimilarly, in playing a game of chess, a player may see very well where all the
pieces are and be able to foresee various possible unfoldings of the game, but
he /she probably does not know his/her opponent well enough to predict the
reply to each move. The opponent may be thinking about his/her love life and
suddenly make some unexpected move.
Except in very artificial situations, a person or machine doesn’t have all the
knowledge it needs to guarantee a perfect performance. As a result, the system or
he designer of the system needs to recognize the limits of the system’s knowledge
hnd avoid costly errors that might result from assuming it knew all there was to
know.

The LINNEUS program stays within its limits when it responds negatively
0 a question such as, “Is a house an animal?” Its reply is, “SORRY NOT
'HAT I KNOW OF.” This points up a limitation of LINNEUS in not providing
b way to represent negative information; e.g., “a house is not an animal.” The
brogram does, however, avoid concluding falsely that, for example, “a house is
pot a building” only because it hadn’t been told that a house is a building.
There are times, however, when it is reasonable to assume that the system
knows everything there is to know about a problem. For example, if the classical
problem of missionaries and cannibals? crossing a river is posed, it would be
‘cheating” to propose a solution using a bridge, since no bridge is specifically
nentioned in the problem. Thus, it can be appropriate to make use of the closed-
world assumption that anything which cannot be derived from the given facts is
bither irrelevant or false.
When the closed-world assumption can be made, that is very nice, because
It implicitly represents a whole lot of things that might otherwise have to be
xplicitly stated (e.g., “You may not use a bridge,” “You may not drug the
annibals,” etc.).

There is another way, though, that the closed-world assumption can lead to
frouble. Its use could imply that, “if you can’t find a solution to a problem then

2The missionaries and cannibals problem is stated as follows: There are three missionaries
nd three cannibals on one bank of a river that they must cross. There is a rowboat there

at can carry up to two people, including the one who rows. If there ever are more cannibals

an missionaries on one side of the river, then the missionaries on that side (if any) will be
aten. Otherwise, all will cooperate in peaceful transport. What is the plan by which the
ntire party of six can cross the river uneaten?
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F there is no solution.” This may often be true, but might be false even more
often. For example, if a system is inefficient at finding solutions and doesn’t try
long enough to find one, it could mistakenly infer that no solution exists. Even
if the system is a good one, it might not be able to verify a true statement, as
Godel showed in his famous work on the incompleteness of arithmetic.
In designing a system for representing knowledge, one should decide whether
a closed-world assumption can be used. If not, then it may be necessary to
| provide ways to represent negative information (e.g., “A house is not an ani-
" mal”). Alternatively, compromises are possible where the absence of an explicit
or derivable fact suggests that the negation may be true but does not assure it.
Information obtained from suggestions would always be qualified when reported
to the user, but could be used freely by the system for the purpose of directing
gearch where it would be helpful if true but have little effect if false.

4.13.2 Knowledge Acquisition

The question of how knowledge should be represented is related to the questions
of where the knowledge comes from and how it is acquired. Here are three
reasons why these questions are related:

1. because the representation chosen may affect the acquisition process (this
is discussed further in Chapter 8),

2. because the acquisition process can suggest useful representations (tools
exist that build up knowledge structures from dialogs with human ex-
perts), and

3. because it is possible that some of the knowledge that a system is to use
should stay in the form in which it is available (e.g., text files representing
books and reports).

Methods for building knowledge structures automatically or interactively are
discussed in Chapter 8.

4.14 Summary of Knowledge Representation
Schemes

Eight of the methods discussed in this chapter are compared in Fig. 4.23.

A serious system for knowledge-based reasoning must combine two or more of
the basic approaches. For example, a frame system may be organized as an ISA
hierarchy whose nodes are schemata with instance frames linked to them. The
slots of the frames may be considered to represent predicates, and the filled-in
values and frame names may be viewed as arguments (terms) to the predicates,
80 that logical inference may use the knowledge in the frames. At the same time,
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Method Relations | Inference Strong Or- Principal Shortcomings
Handled Mechanisms ganization?
Proposition- | Boolean Modus ponens, | No Models only boolean
al logic truth etc. truth relationships
functions but not the statements
themselves
Concept “ISA” Graph search Yes Limited to one relation
hierarchy and transitive
closure
Predicate Any Resolution & No Lacks facilities for orga-
logic predicate | others nizing knowledge; awk-
ward for control infor-
mation
Frames Binary or | Not provided Yes Only a methodology;
ternary not an actual rep. sys-
tem
Semantic binary or | Not provided No (except No standard
nets ternary with parti-
tioning)
Constraints | Any Propagation; No No standard
predi- satisfaction
cates
Production | If-then Rule activation | No Awkward for non-proc-
rules edural knowledge
Relational n-ary Selection, Somewhat Awkward for control
database projection, join information

Figure 4.23: A summary and rough evaluation of eight methods for representing
knowledge.

a base of production rules may encode the procedural knowledge and heuristics
that use the knowledge base to manipulate the state information to solve particu-
lar problems. Thus, in this example, four of the basic knowledge representations
are used: frames, ISA hierarchies, predicate logic, and production rules.

4.15 Bibliographical Information

A very readable introductory article on knowledge representation is [McCalla
and Cercone 1983]. That article is also an introduction to a special issue of
IEEE Computer devoted to knowledge representation. The issue contains fif-
teen additional articles that collectively present a good survey of knowledge
representation.
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Elementary properties of binary relations (reflexiveness, symmetry, antisym-
metry, and transitivity, for example) are treated by many texts on discrete math-

matics, such as [Tremblay and Manohar 1975]. An algorithm for computing the
transitive closure of a relation was developed by Warshall and is given in [Aho,
Hopcroft and Ullman 1974]. For an intriguing treatment of the semantics of
ISA” see [Brachman 1983].

A collection of research papers that address the issue of representation of
. knowledge is [Bobrow and Collins 1975]. One of those papers is particularly
- good as an introduction to the problems of representing the kinds of knowledge
that can support dialogs in natural language [Woods 1975).

The use of the predicate calculus as a knowledge representation method is
described in [Nilsson 1981]. The frames approach to knowledge organization was
presented in [Minsky 1975]. A formalism called KRL, which stands for “knowl-
' edge representation language” was developed [Bobrow and Winograd 1977] for
expressing knowledge in a frame-like way.

- Constraints were used extensively as a means of knowledge representation in

[Borning 1979]. A good overview of the use of constraints is [Deutsch 1981].

: Relational databases, developed in large part by [Codd 1970], are introduced
in [Date 1976} and [Ullman 1982]. A thorough theoretical treatment is provided

by [Maier 1983]. Many of the issues common to database systems and knowl-

edge representation are treated in papers that were presented at a Workshop

sponsored by three ACM special interest groups [Brodie and Zilles 1981].
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Exercises

1. Imagine a computer network of the future in a large hospital, that in-
cludes patient-monitoring devices, medical records databanks, and physi-
cians’ workstations. Explain some possible uses of data, information and
knowledge in this environment.

2. Describe how knowledge may be represented in each of the three parts of

a production system.
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_ For each of the following, determine which of the two relations “subset-
of” or “element-of” is being represented, and reformulate the statement
to make this clearer. The first one is done for you. If you find genuine
ambiguity in a statement, justify each of the possible interpretations.

(a) Fido is a dog. Fido € dogs

(b) A parrot is a bird.

(c) Polly is a parrot.

(d) David Jones is a Jones.

(e) “George Washington” is a great name.

(f) Artificial intelligence is a state of mind.
. For each of the following relations, state whether or not it is reflexive,
whether or not it is symmetric, whether or not it is transitive, whether
or not it is antisymmetric, and whether or not it is a partial order. For

each example, let the set S on which the relation is defined be the set of
elements mentioned in that example.

(@) {(a, a)}

(b) {(a, b), (a, c), (b, c}}

() {(a, a), (a, b), (b, b), (b, c), (a, c), (¢, c)}
(d) {(a, b), (b, )}

(e) {}

. Let R be the relation {(a, b), (a, ¢), (b, ¢)}. Draw the graph of this
relation. Draw the Hasse diagram for this relation.

. Give an example of a transitive relation on a set of people. Is the “ancestor-
of” relation transitive? How about “parent-of,” “cousin-of,” “sister-of,”
and “sibling-of?” Assume that these are “blood-relative” relations rather
than the more general ones that include adoptions, etc.

. Write a LISP program that takes a binary relation, and computes its
transitive reduction.

. Write a LISP function which determines whether the input relation is
reflexive or not.

. Improve the efficiency of the ISATEST function in the LINNEUS program
by having it terminate the search as soon as the goal is reached.

. Let us assume that “HOUSE HAS ROOF” means that a house has a roof
as a part. Suppose we want to extend LINNEUS to know about and
reason with HAS links as well as ISA links.
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(a) Let Isa(z,y) mean “an  is a y,” and let Has(z, y) mean “an z has a
y as a part.” New HAS links may be inferred from combinations of
existing ISA and HAS links. For example,

Has(z,y)A Isa(y, z) = Has(z, 2).
Complete the predicate calculus formulation of the rules for inferring
HAS relationships described on page 104.

(b) Just as (ISATEST X Y N) succeeds if there is a path from X to Y of
length N or less, following only ISA links, one can imagine a function
(HASTEST X Y N) that tests for an implied HAS relationship be.
tween X and Y. Exactly what kind of path between X and Y implies
that the test should succeed?

(c) Extend the LINNEUS program to properly handle HAS links. Al
lowable inputs should include expressions such as:

(DOG HAS SNOUT)
which expresses the fact that a dog has a snout, and
(DOG HAS LEG)
which says a dog has a (at least one) leg, and
(HAS DOG PAW)

which asks “Does a dog have a paw?” or equivalently, “Do dogs have
paws?”

11. Extend the LINNEUS program to automatically maintain its inclusion

hierarchy in transitive reduction (Hasse diagram) form. In connection
with this, the conversational front end should handle the following new
kinds of responses:

(I ALREADY KNOW THAT BY INFERENCE)

(I HAVE BEEN TOLD THAT BEFORE)

(YOUR EARLIER STATEMENT THAT A MOUSE IS AN ANIMAL IS NOW
REDUNDANT)

You may name your new program whatever you like. Suppose it is called
“SMARTY.” If you tell SMARTY that “(A DOG IS A MAMMAL)” and
then later tell it exactly the same thing, it should respond “(1 HAVE
BEEN TOLD THAT BEFORE)”. If you tell it something that it can
already deduce, it should respond “(I ALREADY KNOW THAT BY IN-
FERENCE)” and if you tell it something new (not already implied) that
makes a previously input fact redundant, SMARTY should reply with a
statement such as (YOUR EARLIER STATEMENT THAT A MOUSE
IS AN ANIMAL IS NOW REDUNDANT). Furthermore, the redundant
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link should then be removed, so that the internal data structure is kept
non-redundant. Test your program on the following sequence of facts plus
another sequence of your own creation.

(A LION IS A CARNIVORE)

(A LION IS A CARNIVORE)

(A CARNIVORE IS AN ANIMAL)
(A LION IS AN ANIMAL)

(A LION IS A THING)

(A DOG IS A THING)

(A MAMMAL IS A THING)

(A DOG IS AN ANIMAL)

(AN ANIMAL IS A THING)

(A DOG IS A MAMMAL)

12. By including more kinds of links in an ISA hierarchy, we can obtain a

13.

14.

more general kind of semantic network.

(a) Extend the program LINNEUS to properly handle the ELE-
MENT_OF relation expressed by user inputs such as “(JANET IS A
WOMAN)” and “(LARRY IS A LOBSTER)”. Your program should
correctly handle questions such as:

i. (WHO IS JANET),
ii. (WHAT IS LARRY),
iii. (IS LARRY AN ANIMAL), and especially
iv. (IS A LARRY AN ANIMAL), and
v. (WHAT IS A JANET)

These last two types should be answered with a message that indi-
cates that they contain a false presupposition.

(b) Further extend the program to handle the ownership relation as in
(LARRY OWNS A CLAM) or (JANET OWNS A PORSCHE). Al-
low the user to type appropriate statements and questions and get
answers that are reasonable. Note that if Janet owns a Porsche and
a Porsche is a car, then Janet owns a car.

Draw a semantic network representing the sentence, “Artificial Thought,
Inc. bought a controlling interest in Natural Ideas, Inc. for the sum of $23
million.” Include nodes for each object or event and the class to which it
belongs.

Suppose that we wish to represent some notion of the ISA hierarchy of
Fig. 4.4 using propositional calculus. It is very difficult to represent the
hierarchy in a way that would let us do reasoning based on inheritance of
properties, for example. However, consider the following statements:
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P1: “Larry is a lobster.” (i.e., Larry is a member of the class lobster)
P2: “Larry is a crustacean.”

P3: “Larry is an arthropod.”

etc.

Class inclusion may be represented (in this very specific case of Larry) by
the expressions:

Pl = P2
P2 = P3
etc.

This knowledge can be used to infer “Larry is an arthropod” from the
statement that “Larry is a lobster.”

(a) If we add the statement, P4: “Louise is a lobster,” what can be
inferred about Louise?

(b) Give additional propositions to support inferences about Louise.

(c) Give a set of predicate calculus expressions for the knowledge that
allows some inferences about both Larry and Louise.

The predicate calculus supports certain kinds of quantification quite nicely,
but not all kinds.

(a) For each of the statements below, give a predicate calculus formula
that represents its meaning.

i. There exists a white elephant.

ii. There uniquely exists a white elephant.
iii. There are at least two white elephants.
iv. There exist exactly two white elephants.

(b) Describe a scheme that, for any given n, can be used to create a
formula to represent the statement, “There exist exactly n white
elephants.”

(c) What does your answer to part (b) suggest about the predicate cal-
culus in representing numerically quantified statements?

By using the symbol P to represent the statement “It is raining today,”
so much of the detail of the sentence has been lost in abstraction that
nothing is left that represents the objects or actions that make up the
statement. In the predicate calculus, on the other hand, we might repre-
sent the statement with “Weather(Today, Raining)” which provides rep-
resentational components for important parts of the statement. However,
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if the symbol P were replaced by the identifier “Raining” and the pred-
icate “Weather(Today, Raining)” were redescribed as P(a,b), then the
predicate calculus representation would seem less informative than the
propositional one. Explain the cause of this apparent paradox and which
representational scheme provides a more informative representation.

-17. Describe how the knowledge necessary to drive a car might be organized
in a collection of frames.

'18. Write representations for the following constraint schemata mentioned on
page 123:

(a) INITIAL
(b) SERIES_CURRENT
(c) SERIES_RESISTANCE

19. Design, implement, and test a LISP program that accepts a list of con-
' straint schemata and a list of constraints and then determines the values
of uninitialized variables by applying the constraints in a systematic fash-
ion. Demonstrate your procedure on the circuit problem described in Fig.
4.18.

20. Consider the following problem. Let {(x1,%1), (%2, ¥2), (z3,y3)} be the set
of vertices of a triangle whose perimeter is P and whose area is A. Suppose
21 =0, = 0,72 = 6,y2 = 0, and A = 30.

(a) Develop constraint schemata and instances to represent the problem.

(b) Which variables are forced to particular values? Which are not
forced? What, if anything, can be said about the ranges of possi-
ble values for the variables which are not forced?

21. Relational databases are frequently incorporated into intelligent systems.

(a) Project the relation ANGIOSPERMS (on page 125) to obtain a new
relation employing only the attributes “General Form” and “Seed
Body.”

(b) Compute the join of the relation you just found in part (a) with the
relation R3 on page 127.

(c) What is the sequence of selections, projections, joins and counting
operations necessary to process the query: “How many products are
made from small plants?” using the relations ANGIOSPERMS and
R37? ,

22. Relational database operations can be coded in LISP to demonstrate
question-answering capabilities.
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(a) Design a LISP scheme for representing n-ary relations.

(b) Write one or a collection of LISP functions to compute the projection
of a relation (onto any given list of attributes).

(c) Write a LISP function to compute the join of two relations.

(d) Add whatever functions and other representations may be necessary
to automatically handle queries such as that of the previous problem,
part (c). Assume these queries are presented in the form (A1 A2 V?2)
which means “How many different values of A1 can be found in tuples
whose A2 value is V27?”

23. Suppose a system uses a small knowledge base consisting of the following

statements in the predicate calculus, and suppose it is capable of making
logical deductions, but does not know anything special about any of the
predicates such as “Color” or “Equal” that might appear in its knowledge
base.

e Color(Applel, Red)

o Color(Apple2, Green)

e Fruit(Applel)

o Fruit(Apple2)

e Va{[Fruit(x)AColor(z,Red)] = Ripe(x)}
Assume the system makes the closed-world assumption. For each of the

predicate calculus statements (a) through (h) tell whether the system
would assign to it a value of true, false, or unknown:

(a) Color(Apple3, Red) (e) —Color(Applel, Red)
(b) Fruit(Apple2) (f) Color(Applel, Blue)
(c) Ripe(Applel) (g) NotEqual(Red, Blue)
(d) Ripe(Apple2) (h) Equal(Red, Blue)

(i) To what extent does the system make a consistent interpretation of
the statements (a) through (h)?

(i) Is there any inconsistency?



5.1 The Notion of Searching in a Space of
States

Methods for searching are to be found at the core of many Al systems. Before
knowledge representation became the key issue of Al in the 1970’s, search tech-
niques were at the center of attention in research and in courses on Al They are
gtill of central importance in Al not only because most systems are built around
them, but because it is largely through an understanding of search algorithms
that we are able to predict what kinds of Al problems are solvable in practice.
The idea of searching for something implies moving around examining things
dnd making decisions about whether the sought object has yet been found. A
_cave explorer searching for treasure moves around from one underground place
%o another, looking to see where he is going and to see if there are any valuables
‘around him. He is constrained by the geometry (or topology) of the cave; he must
follow passageways provided by nature. A chess player searching for the best
move in the middle of a game mentally makes moves and countermoves, finding
the merits of resulting board positions and, in the process, finding the degree
to which he can control the game to reach some of these positions. An engineer
‘who designs integrated-circuit layouts considers sequences of design choices that
lead to acceptable arrangements of components and electrical connections; he
~searches through spaces of possible designs to find those that have the required
Properties.

Many computer programs must also search along constrained paths through
intricate networks of knowledge, states or conditions to find important informa-
tion or to reach a goal position. In general such a network can be described as a
graph: a set of nodes together with a set of arcs that connect pairs of nodes. The
“nodes represent “states” of a space of possible configurations. The transitions or
. moves that go from one state to another are represented by arcs of the graph.
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The choice of a search method is often a critical choice in the design of an
Al program. A poor choice can ensure that the program will always flounder
in the “combinatorial quagmire” before it can find a solution to any nontrivia]
problem. Exhaustive techniques can be appropriate for small problems, but the
human user will become exhausted waiting for a machine that uses a “British
Museum” search method on only a moderately-complicated problem. A good
search method typically uses some particular information about the problem or
some general knowledge to focus the search for a solution on areas of the state
space that have a reasonable chance of containing the solution.

In Al systems, the networks to be searched may be represented either explic-
itly or implicitly. For example, the inclusion hierarchy used by the LINNEUS
program in Chapter 4 is an explicit network, where each arc is stored using
relational information on the property list of an atom. However, many Al pro-
grams must search networks whose arcs are not explicitly stored and which must
be generated from rules, one at a time. A computer program that plays chess
explores a game tree in which each node corresponds to a board position and
each arc corresponds to a legal move. The complete tree of all possible games
is so huge that it cannot be explicitly represented. Rather, parts of it must be
generated when needed according to the rules for moving pieces. The goal, of
course, is to choose best moves by evaluating the consequences of each possible
move from the current position. This search is for more than just a good node
in the tree; it is, in a sense, for the best “subtree” from the current position. In
this chapter we work with examples of both implicitly and explicitly represented
search spaces.

There are several key notions connected with search. The most important of
them, just mentioned above, is the concept of a state space: the set of all the
possible states for a problem together with the relations involving states implied
by the moves or operators. The graph, whose nodes represent states and whose
arcs represent the relations, provides a good abstract representation for a state
space. Another key notion is that of a move generator: a way to obtain the
successors of a given state or node. The third key notion is the search method.
or kind of algorithm that is used to control the exploration of the state space.
A fourth idea is that of search heuristics; these are guiding principles, often of
a pragmatic nature, that tend to make the search easier. A common way of
controlling a search is to employ an “evaluation function” which computes an
estimate of the merits of a particular successor to the current state or node.

Puzzles are easy to understand and describe, and they provide a good starting
point for studying search methods. We shall begin our discussion of search with
an analysis of a simple class of puzzles called “painted square” puzzles. Although
this class of puzzles is elementary, it is a good vehicle for examining some subtle
issues in the description of operators. The class is general, in that particular
versions of the puzzle may have zero, one, or many solutions. This feature
makes the puzzles somewhat more realistic as problems than the “15” puzzle
por “Towers of Hanoi” puzzle that are sometimes used for teaching elementary
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4 gearch techniques.
] We will describe a procedure for solving painted square puzzles which works
¢ by searching a space of configurations (which may be regarded as potential so-

i Jytions).

5.2 The Painted Squares Puzzles
5.2.1 A Kind of Geometrical Puzzle

" Given a set of N square blocks with painted sides, it is desired to place the squares
. adjacent to one another to form one large rectangle (of given dimensions), such
that adjacent sides of the squares always match. A sample game for N = 4 and
dimensions 2 by 2 is shown in Fig. 5.1.

Figure 5.2: A solution to the sample puzzle.

We should note that such puzzles may or may not have solutions, depending
upon how the squares have been painted. For example, if all four sides of piece 1
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wqre striped, .all four sides of 2 boxed, all four of 3 gray and all four of 4 hashed,
ng two squares. <ould be placed together, let alone all four of them.

52.2 Solution Procedure

A |solution, whem ©one exists, can be found by the following procedure: enu-
mérate the vacamt positions in the rectangle with the numbers 1 to N, using a
lef}-to-right, t op—to-bottom order. Starting with vacant position 1, select the first
panted square and place it in its first orientation (each square can be rotated
info four different orientations). At each successive step, after having filled the
it vacancy with the j** square in the k" orientation, attempt to fill the i + 1°¢
vafancy with the lowest numbered unused square in the first orientation. If this
nejv placement does not match sides with previously placed squares, the follow-
ing alterations are tried: successive orientations of the same square, successive
unused squares, and retraction of the most recently placed square (backtrack-
ing). This procedure eventually either finds a solution if one exists, or exhausts
alll the possibilities without finding a solution. Backtracking can often be very
ingfficient. In the case of the painted squares puzzles it is generally much more
efflcient than ann obvious alternative, which is to generate all possible arrange-
mgnts of the squares in the rectangular space, testing each one to see whether it
is p solution to the puzzle!

52.3 States and Operators

Wt may think of each partial (or complete) arrangement of squares in vacancies
asla “state.” A state is one of the possible configurations of the puzzle. It is a
snppshot of one situation. A state is a configuration that could be reached using
a gequence of legal moves or decisions, starting from an initial configuration. The
sequence of steps that leads to a state is not part of the state. There may be
mgre than one way to get to the same state.

Once again, the state space for a puzzle consists of the set of all the states for
a puzzle, together with the relation implied by the legal moves for the puzzle.
E4ch legal move from a state leads to a single new state. The pair (current state,
nely state) form omne element in the move relation. For the painted squares puzzle
of[Fig. 5.1, a portion of the state space is shown in Fig. 5.3.

The representation of a state is an embodiment of the essential information
abput a state; the representation distinguishes the state from all others. A
gopd representation also does more: it facilitates the application of operators to
cojnpute successive states; it is understandable by the scientist or programmer;
it Js efficient, etc. In the painted squares puzzle, we may represent a state by
a Jist of pairs, each pair indicating a piece and an orientation. For example,
pi¢ce 1 in the second orientation (i.e., rotated 90 degrees counterclockwise) is
represented by the pair (P1 2), and the state consisting of this one piece being
pliced in the first enumerated vacancy of the rectangle, in this orientation is
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Figure 5.3: A portion of the state space for the sample puzzle.
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indicated by ((P1 2)). The list () represents the starting state for the puzzle (no
pieces placed). The solution shown above is represented by

((P2 1) (P4 3)(P1 4)(P3 2)).

The reason we list the pairs in reverse order will be apparent later, when we code
our algorithm.

A state can be changed by placing a new square into the next vacancy, or by
removing the most recently placed square. More generally, we say that states
are changed by applying operators. Operators are transformations that map one
state to another.

An example operator is “place piece 3 in the second place with the third
orientation.” This operator is a rather specific one, and is only applicable if
the current state satisfies some stringent conditions: the first place must be full:
the second place must be empty; piece 3 must not have been used already to
fill place 1 and when rotated to the third orientation, the side of piece 3 that
would touch the piece in place 1 must match there.

A more general operator is “place the first unused piece in the next vacant
position in the first orientation that makes all the adjacent pieces match.” There
are still conditions for the applicability of this operator, but they are not so
restricting. There must be an unused piece (if not, the puzzle has been solved!);
there must be at least one orientation of the piece such that its placement in the
next vacant position does make all adjacent sides match.

There is obviously quite a variety of operators one could imagine that could be
used to describe moves in our puzzle. To put some order on them, we will consider
general schemes for making state changes that may “generate” operators when
called upon. The backtracking procedure sketched out earlier does essentially
that. It produces new operators in an orderly sequence in order to search for a
goal state.

5.2.4 Representation of the Puzzle and Its States in LISP

Let us work out a LISP program to implement the backtracking search procedure
for the painted squares puzzles. We need a representation for the pieces, and a
procedure to generate operators (these operators may only produce legal states—
those in which adjacent sides of placed squares match).

Each piece can be represented as an atom with a property PATTERN which
describes how its sides are painted. Let ST, BX, GR, and HA indicate striped,
boxed, gray and hashed, respectively. Then we establish our piece representa-
tions (for the example shown) by the following LISP expressions:

(PUTPROP ’P1 ’ (ST HA GR ST) ’PATTERN)
(PUTPROP ’P2 ’(BX ST HA BX) ’'PATTERN)
(PUTPROP ’P3 ’(ST HA BX GR) ’PATTERN)
(PUTPROP ’P4 ’(GR GR HA BX) ’'PATTERN)
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3 Our convention is that the sides are ordered starting from the south, moving
 then east, north, and finally west. The list of pieces available starts out with all

| (SETQ PIECES_AVAIL ’(P1 P2 P3 P4))

The dimensions of the rectangle to be filled are 2 and 2:

L (SETQ BOX_WIDTH 2)
| (SETQ BOX_LENCTH 2)

To orient a piece we rotate its pattern by one rotation less than the orientation

E(DEFUN ORIENT (PIECE ORIENTATION)
L (ROTATE_LIST (GET PIECE ’PATTERN) (SUB1 ORIENTATION)) )

V; The helping function ROTATE_LIST moves elements from the end to the
! beginning with the help of functions LAST and ALL_BUT_LAST.

b (DEFUN ROTATE_LIST (L N)
' (COND ((ZEROP N) L)
(T (ROTATE_LIST
(CONS (LAST L)
(ALL_BUT_LAST L) )
(SUB1 N) )) ) )

DEFUN LAST (L)
(COND ((NULL (CDR L))(CAR L))
(T (LAST (CDR L))) ) )

DEFUN ALL_BUT_LAST (L)
(COND ((NULL (CDR L)) NIL)
(T (CONS (CAR L) (ALL_BUT_LAST (CDR L)))) ) )

. To find out whether a new piece will match adjacent sides in the current
. configuration we use a function SIDESOK. If the current state is null, no pieces
P have been placed, and the new piece is OK. Otherwise, there are three cases that
# must be contended with. If the new piece is in the leftmost column, it only has

neighbor to the north that it must match. If the new piece is in the first row
t only has a neighbor to the west that it must match. In any other case it must
match both a neighbor to the north and a neighbor to the west.

- (DEFUN SIDESOK (NEW_PIECE ORIENTATION CUR_STATE)
(COND ((NULL CUR_STATE) T) ;no pieces previously placed
(T (PROG (TRIAL LEN) ;some " " "
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(SETQ TRIAL (ORIENT NEW_PIECE ORIENTATION))
(SETQ LEN (LENGTH CUR_STATE))
(COND
;case of leftmost column:
((ZEROP (REMAINDER LEN BOX_WIDTH))
(RETURN (MATCHNORTH TRIAL CUR_STATE)) )
;case of top row
((LESSP LEN BOX_WIDTH)
(RETURN (MATCHWEST TRIAL CUR_STATE)) )
;general case:
(T (RETURN
(AND (MATCHNORTH TRIAL CUR_STATE)
(MATCHWEST TRIAL CUR_STATE) ) ))
)ADDIDED!

This uses the helping functions MATCHNORTH and MATCHWEST. The
job of MATCHNORTH is to find the square which is just to the north of the
trial square and to see if its south side matches the north side of the rotated new
piece. In the example, BOX_WIDTH is 2 and the neighbor to the north is in
the second element of the current-state list.

(DEFUN MATCHNORTH (TRIAL STATE)
(EQ (CADDR TRIAL) ;north side of rotated new piece
(CAR (APPLY ’ORIENT
(GETNTH BOX_WIDTH STATE) ))
;south side of square to the north.

))

Similarly we define MATCHWEST so it returns T when the trial placement
agrees with the neighboring piece to the west.

(DEFUN MATCHWEST (TRIAL STATE)
(EQ (CADDDR TRIAL) ;west side of rotated new piece
(CADR (APPLY ’ORIENT
(CAR STATE) ))
;east side of square to the west

))

The reason for representing states in backwards order is now apparent. With
the most recent placement first, the act of checking to see whether a trial will
match requires accessing recent additions to the state list. In LISP it is easier
to get them near the front of a list than near the end of a list.

5.2.5 A Backtracking Search Procedure in LISP

So far we have defined a representation for states of our problem, and we have
described functions that test trial placements for consistency in matching of sides
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%  pieces. We now need a procedure to drive the overall search, generating the
sible placements and backtracking when impasses are reached. Let us call
general searching procedure SOLVE_SQUARES. At the top level it would

» invoked with
,SOLVE_SQUARES NIL PIECES_AVAIL)

e assume this invocation is done from a function TEST which also initializes
solution counter. It calls a helping function TRYPIECE which implicitly gen-
ates classes of operators to try placing pieces in the next vacant position. The
elping function SHOW numbers and prints out solutions.

DEFUN SOLVE_SQUARES (CUR_STATE UNUSED_PIECES)
(COND ((NULL UNUSED_PIECES) (SHOW CUR_STATE)) ;sol’n found
(T (MAPCAR ’TRYPIECE UNUSED_PIECES)
NIL) ) )

(DEFUN SHOW (SOLN)
(PROG () (SETQ COUNT (ADD1 COUNT))
e (PRIN1 ’SOLUTION)
(TYD 32)
(PRIN1 COUNT)
(TYO 58)
(PRINT SOLN) ) )

{DEFUN TEST ()

+(PROG (COUNT)

(SETQ COUNT 0)

(SOLVE_SQUARES NIL PIECES_AVAIL) ) )

. The function TRYPIECE fans out the search for a solution using a given piece
i!l‘ the next vacant place, in four directions, one for each possible orientation of

t}lat piece.

{DEFUN TRYPIECE (PIECE)
(MAPCAR ’TRYORIENTATION ’(1 2 3 4)) )

Control is then passed to TRYORIENTATION. Here a call is made to
SIDESOK to check a specific trial placement for side-matching consistency. If
consistent, the search is made to continue with a new current state that includes
he new piece placed in the given orientation.

_ (DEFUN TRYORIENTATION (ORIENTATION)
(COND ((SIDESOK PIECE ORIENTATION CUR_STATE)
(SOLVE_SQUARES
(CONS (LIST PIECE ORIENTATION) CUR_STATE)
(DELETE PIECE UNUSED_PIECES) ) )
(T NIL) ) )
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If the trial placement is inconsistent with the currently-placed squares, the secong
clause of the COND returns NIL, effectively pruning the search along the Current
branch (by not pursuing it any further) and backtracking up the search tree (by
returning from the call to TRYORIENTATION).

The helping function CADDDR may have to be defined for some LISP Sys-
tems:

(DEFUN CADDDR (X) (CADDR (CDR X)))
The search is started by the user’s typing:
(TEST)

5.2.6 Remarks on Efficiency

Evidently, SOLVE_SQUARES keeps searching for more solutions even after it
finds one. The number of solutions is always even, since a rectangle can be
rotated 180 degrees and still fit on itself; in the case of a square rectangle (as in
our 2 by 2 example) the number of solutions is a multiple of 4. In fact, there are
24 different solutions to our example.

It is interesting to note that the number of calls made to TRYORIENTATION
before the first solution is found generally depends not only upon the data (the
pieces and the manner in which they are painted) but also on the order in which
they are listed.

A note about the efficiency of our program is in order. The functions
MATCHNORTH and MATCHWEST have a disadvantage: they apply ORI-
ENT to pieces already placed, needlessly repeating work that was already per-
formed. This redundant work can be avoided by making the state representation
a little more ugly but explicit. Rather than describe each oriented piece as an
atom-integer pair, one may describe it as an atom-list pair, where the list is
the result of applying ORIENT to the atom-integer pair. Then minor changes
must be made to MATCHNORTH, MATCHWEST, TRYORIENTATION, and
SIDESOK. This optimization is left as an exercise for the reader.

5.3 Elementary Search Techniques
5.3.1 A Search Problem

In order to illustrate several different search techniques, we shall use a map
of cities of France, transformed into a graph. This graph serves as an explicit
representation of a state space. The search techniques we describe will be general,
and can also work in a state space that is implicit. In that case, the states would
be generated gradually by applying operators rather than pre-existing. (When
search techniques are used for theorem proving, in Chapter 6, the search space
is implicitly represented.)
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Calais

Strasbourg

Bordeaux

Montpellier
Toulouse

Marseille

Figure 5.4: The state space for comparing algorithms.

L Here, the use of an explicit state space helps us to understand the behavior of
f the search algorithms by making it obvious (to us humans) what kinds of paths
to a solution exist. This is particularly helpful when alternative algorithms
 are compared, as is the case in this chapter. In our space, the roles of states
 are played by cities (the nodes of the graph, and the nodes, in turn, are later
- represented as LISP literal atoms), and the moves are transitions along arcs of the
E graph. Although we put an explicit representation of the graph into the machine,
. our search procedures only have access to a portion of the representation at
B any particular time. The algorithms search from a starting point in the graph

- outward to find a goal node. The algorithms may or may not actually explore
l the entire graph; for example, if the goal is found after only a few transitions,
{ the majority of the nodes may remain unexplored.

Figure 5.4 illustrates the search space.
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We may represent the adjacency data in the map by listing for each city the
other cities directly connected to it, and putting this on the property list:

(PUTPROP ’BREST ’(RENNES) ’ADJCNT)

(PUTPROP ’RENNES ’(CAEN PARIS BREST NANTES) ’ADJCNT)

(PUTPROP °CAEN ’(CALAIS PARIS RENNES) ’ADJCNT)

(PUTPROP ’CALAIS ’(NANCY PARIS CAEN) ’ADJCNT)

(PUTPROP ’NANCY °’ (STRASBOURG DIJON PARIS CALAIS) ’ADJCNT)
(PUTPROP ’STRASBOURG ’(DIJON NANCY) ’ADJCNT)

(PUTPROP ’DIJON ’(STRASBOURG LYON PARIS NANCY) ’ADJCNT)

(PUTPROP ’LYON ’ (GRENOBLE AVIGNON LIMOGES DIJON) ’ADJCNT)
(PUTPROP ’GRENOBLE ’(AVIGNON LYON) ’ADJCNT)

(PUTPROP ’AVIGNON ’>(GRENOBLE MARSEILLE MONTPELLIER LYON) ’ADJCNT)
(PUTPROP ’MARSEILLE ’(NICE AVIGNON) ’ADJCNT)

(PUTPROP ’NICE ’(MARSEILLE) ’ADJCNT)

(PUTPROP ’MONTPELLIER ’ (AVIGNON TOULOUSE) ’ADJCNT)

(PUTPROP ’TOULOUSE ’ (MONTPELLIER BORDEAUX LIMOGES) °’ADJCNT)
(PUTPROP ’BORDEAUX °’ (LIMOGES TOULOUSE NANTES) ’ADJCNT)

(PUTPROP ’LIMOGES ’(LYON TOULOUSE BORDEAUX NANTES PARIS) ’ADJCNT)
(PUTPROP ’NANTES °’ (LIMOGES BORDEAUX RENNES) ’ADJCNT)

(PUTPROP ’PARIS ’(CALAIS NANCY DIJON LIMOGES RENNES CAEN) ’ADJCNT)

Let us suppose that we wish to find, with the help of a program, a route from
Rennes to Avignon. There are several approaches we might take.

5.3.2 Hypothesize and Test

If one has very little knowledge about the space one must search, one may be
inclined to explore it at random. Beginning from Rennes one could roll dice
to choose which road to begin with. It is possible that a random decision se-
quence might lead one to the goal state (Avignon). Without an informed way
of generating hypotheses (trial routes), however, one can expect to waste a lot
of time with this approach. The first obvious improvement we can make is to
systematize the search so that the various possible alternatives are tried in an
orderly fashion.

5.3.3 Depth-First Search

We can proceed by listing the cities directly accessible from Rennes and then
going to the first of these (taking us to Caen), and then adding to the list the
new places one could go to directly from there, and moving to the first of those,
etc., until we have either found Avignon or reached a dead end. If a dead end is
reached, we can back up to the last city visited from which we had a choice of new
cities and try the next alternative. Such a search technique is analogous to the
backtracking search used in our solver for the painted squares puzzles. There
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are some subtle differences, however; for example, the new procedure avoids
E repeatedly examining nodes via an explicit test, whereas SOLVE_SQUARES
voided repetitions implicitly (if the pieces were all different). We can describe
' ‘this depth-first search algorithm as follows:

1. Put the start node on a list OPEN and associate a null pointer with the
node.

9. If OPEN is empty, output “FAILURE” and stop.

3. Select the first node on OPEN and call it N. Delete it from OPEN and
put it on a list CLOSED. If N is a goal node, output the list obtained by
following the chain of pointers beginning with the pointer associated with

N.

4. Generate the list L of successors of N and delete from L those nodes already
appearing on list CLOSED.

5. Delete any members of OPEN which occur on L. Concatenate L onto the
front of OPEN and to each node in L associate a pointer to N.

6. Go to step 2.
This may be described in LISP as follows:

(DEFUN DEPTH_FIRST_SEARCH (START_NODE GOAL_NODE)

"(PROG (OPEN CLOSED N L)

: (SETQ OPEN (LIST START_NODE)) ;stepl
(PUTPROP START_NODE NIL ’POINTER)

LOOP (COND ((NULL OPEN) (RETURN ’FAILURE)))  ;step2
(SETQ N (CAR OPEN)) ;step3
(SETQ OPEN (CDR OPEN))
(SETQ CLOSED (CONS N CLOSED))
(COND ((EQ N GOAL_NODE) (RETURN (EXTRACT_PATH N))))
(SETQ L (SUCCESSORS N)) ;stepd
(SETQ L (SET_DIFF L CLOSED))
(SETQ OPEN (APPEND L (SET_DIFF OPEN L)));step5
(MAPCAR ’(LAMBDA (X) (PUTPROP X N ’POINTER)) L)
(GO LOOP) ;step6
) )

The helping function EXTRACT _PATH follows the pointers to produce a
list of nodes on the path found:

(DEFUN EXTRACT_PATH (N)
(COND ((NULL N) NIL)
(T (APPEND (EXTRACT_PATH (GET N ’POINTER))
(LIST N) )) ) )
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The function SUCCESSORS gets the cities adjacent to N:
(DEFUN SUCCESSORS (N) (GET N ’ADJCNT))

The other nonstandard function used is SET_DIFF, which returns the first
list, but omits members which are also members of the second list.

(DEFUN SET_DIFF (L1 L2)
(COND ((NULL L1) NIL)
((MEMBER (CAR L1) L2) (SET_DIFF (CDR L1) L2) )
(T (CONS (CAR L1) (SET_DIFF (CDR L1) L2))) ) )

One problem with this method of finding a path is that it doesn’t necessarily
find the shortest one. Let us make the simple assumption (for the moment) that
the length of a route is equal to the number of arcs in the graph along the route.
The depth-first search method may just as well find a longest path between two
points as find a shortest path. In fact, evaluating

(DEPTH_FIRST_SEARCH ’'RENNES ’AVIGNON)
gives us the rather roundabout route

(RENNES CAEN CALAIS NANCY STRASBOURG DIJON LYON
GRENOBLE AVIGNON)

which is five arcs longer than necessary.
We can alter our searching procedure to find shortest paths; we shall turn
the function into a “breadth-first” search procedure.

5.3.4 Breadth-First Search

A more conservative style of searching a graph is to search along all paths of
length 1 from the start node, then along all paths of length 2, length 3, etc., until
either the goal is found or the longest possible acyclic paths have been tried. In
actuality, when we search along paths of length k, we need not re-examine the
first kK — 1 nodes of each such path; we need only take one step further in each
possible direction, from the nodes newly reached in iteration number k — 1. This
method is called breadth-first search.

A minor modification in our function DEPTH_FIRST_SEARCH makes it
become BREADTH_FIRST _SEARCH. In steps 4 and 5, we change the way the
list L is merged with the list OPEN. Rather than concatenate L at the front, we
put it at the back. That is, we replace

(SETQ L (SET_DIFF L CLOSED))
(SETQ OPEN (APPEND L (SET_DIFF OPEN L))) ;step§

with
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SETQ L (SET_DIFF (SET_DIFF L OPEN) CLOSED))
SETQ OPEN (APPEND OPEN L)) ;stepb

¢hus putting the newly reached nodes on the end of OPEN, for processing after
" all the nodes at the current depth are finished.

: Now, the possible routes from the start node are explored in order of in-
- creasing length, so that as soon as the goal node is found, we know we have
. constructed a minimum-length path to it. The result of evaluating

?(BREADTH_FIRST_SEARCH 'RENNES ’AVIGNON)
is the much more reasonable route,
(RENNES PARIS DIJON LYON AVIGNON) .

Of course it is possible that DEPTH_FIRST_SEARCH might stumble upon

the shortest path by some coincidence, and it might do so in many fewer iter-

@ ations than BREADTH_FIRST _SEARCH requires. On the other hand, if the

& path is short, DEPTH_FIRST_SEARCH might not find the goal right away,
whereas BREADTH_FIRST_SEARCH would find it very quickly.

' 5.4 Heuristic Search Methods

5.4.1 Evaluation Functions

Both the depth-first and breadth-first methods are “blind” in the sense that they
use exhaustive approaches that can’t “see” where they are going until they get
there. That is, they don’t have any sense of where the goal node lies until they
find it. Consequently, they often spend a lot of time searching in totally fruitless
directions. If some general guiding information is available, the searching can
be biased to move in the general direction of the goal from the very beginning.
For example, when a friend hides a present for you in the house and then gives
you clues of “warmer” and “colder” as you move closer or farther away from the
cache, you will have a much easier time locating the present than without such
feedback.

A function f that maps each node to a real number, and which serves to
estimate either the relative benefit or the relative cost of continuing the search
from that node, is an evaluation function. In the remainder of this section,
we consider only evaluation functions which are cost functions. Typically f(N)
is designed to estimate the distance remaining between N and the goal node.
Alternatively f(N) might estimate the length of a path from the start node to
the goal node which passes through N. The evaluation function is used to decide
. the order in which nodes are to be considered during the search. A search method
. which tends to first expand nodes estimated to be closer to the goal is likely to
i reach the goal with fewer steps.
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For the problem of finding a route from Rennes to Avignon, we now introduce
an evaluation function to provide some rough guidance to the search. Suppose
that the longitude of each city is available. We make f(N) = LongitudeDiff(N,
Avignon) which we define to be the absolute value of the difference between the
longitude of N and the longitude of Avignon. We can now arrange to have the
nodes on OPEN kept ordered by increasing f value, so that the most promising
node to process next always appears at the front. The procedure for exploiting
the new information, called “best-first” or “ordered” search, is described in the
next section. Before proceeding there, we give the additional LISP representa-
tions that will be required.

First we store the longitude data required in computing f:

; Store the longitude (in tenths of a degree) of each city:
(MAPCAR ° (LAMBDA (X) (PUTPROP (CAR X) (CADR X) ’LG))
> ((AVIGNON 48) (BORDEAUX -6) (BREST -45) (CAEN -4)
(CALAIS 18) (DIJON 51) (GRENOBLE 57) (LIMOGES 12)
(LYON 48) (MARSEILLE 53) (MONTPELLIER 36)
(NANTES -16) (NANCY 62) (NICE 73) (PARIS 23)
(RENNES -17) (STRASBOURG 77) (TOULOUSE 14) ) )

Now we define three functions used in computing f:

(DEFUN LONGITUDE_DIFF (N1 N2)
(ABS (DIFFERENCE (GET N1 °’LG) (GET N2 ’LG))) )

(DEFUN ABS (X)
(COND ((GREATERP X 0) X)(T (DIFFERENCE 0 X))))

(DEFUN F (N) (LONGITUDE_DIFF N GOAL_NODE))

We know that GOAL_NODE will be bound to AVIGNON when the search
for AVIGNON from RENNES is begun.

5.4.2 Best-First (Ordered) Search

Let us first describe the general procedure for best-first search, and then we shall
discuss its application to increasing the efficiency of finding a route from Rennes
to Avignon.

With the aid of an evaluation function f on the nodes of a graph it is desired
to find a goal node starting from a start node S.

We begin by placing node S on a list called OPEN. Then we successively pro-
cess the node(s) on OPEN by examining them to see if they are goal nodes, and
if not, transfering them to another list CLOSED while placing their successors
on OPEN, all the while avoiding redundant processing, updating f(N) for each
node N processed, and treating nodes on OPEN in an order that gives priority
to the node having lowest f(N). More precisely:
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1. Place the starting node S on OPEN, compute f(S) and associate this value
with S. Associate a null pointer with S.

2. If OPEN is empty, return “FAILED” and stop or exit.

3. Choose a node N from OPEN such that f(N) < f(M) for each M on
OPEN, and such that N is a goal node if any goal node achieves that
minimum f value.

4. Put N on CLOSED and remove N from OPEN.

5. If N is a goal node, return the path from S to N obtained by tracing
backwards the pointers from N to S. Then stop or exit.

6. For each successor J of N that is not already on OPEN or on CLOSED:

(a) compute f(J) and associate it with J.
(b) put J on OPEN,

(c) associate a pointer with J pointing back to N.

7. For each successor J that is already on OPEN, recompute f(J) and com-
pare it to its previous f value. If the new value is smaller, associate this
new value with J and reposition J on OPEN.

8. Go to Step 2.

; This general procedure may be used to search arbitrary graphs or trees such
< as those that describe the possible sequences of moves in puzzles. The search is
said to be ordered (or “best-first”) because at each iteration of Step 3, it chooses
the best or one of the best alternative directions for searching, according to the
- evaluation function f. The efficiency of the search depends upon the quality of
this function. This function should yield relatively low values along the shortest
path to a goal node, if it is to make the search efficient.

Let us now apply the best-first searching method to finding AVIGNON
' from RENNES, using LONGITUDE_DIFF as the basis for evaluating nodes
on OPEN. Here is the main procedure:

(DEFUN BEST_FIRST_SEARCH (START_NODE GOAL_NODE)

(PROG (OPEN CLOSED N L)
(SETQ OPEN (LIST START_NODE)) ;stepl
(PUTPROP START_NODE (F START_NODE) ’FVALUE)
(PUTPROP START_NODE NIL ’POINTER)

LOOP (COND ((NULL OPEN) (RETURN ’FAILURE)));step2

(SETQ N (SELECT_BEST OPEN)) ;step3
(SETQ OPEN (DELETE N OPEN)) ;stepd
(SETQ CLOSED (CONS N CLOSED))
(COND ((EQ N GODAL_NODE) ;stepb
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(RETURN (EXTRACT_PATH N))))
(SETQ L (SUCCESSORS N)) ;step6
(MAPCAR ’OPEN_NODE

(SET_DIFF (SET_DIFF L OPEN) CLOSED))
(GO LoOP) ;step7
) )

The main procedure employs two special functions. These functions are SE-
LECT_BEST and OPEN_NODE which in turn use helping functions BETTER
and INSERT:

; Function to choose node in step 3...
(DEFUN SELECT_BEST (LST)
(COND ((EQ (CAR LST) GOAL_NODE) (CAR LST))
(T (BETTER (CAR LST)(CDR LST))) ) )

; Helping function for SELECT_BEST checks to see if there is a
; goal node on LST with FVALUE as low as that of ELT.
(DEFUN BETTER (ELT LST)
(COND ((NULL LST) ELT)
((LESSP (GET ELT ’FVALUE) (GET (CAR LST) ’FVALUE)) ELT)
((EQ (CAR LST) GOAL_NODE) (CAR LST))
(T (BETTER ELT (CDR LST))) ) )

; For use in step 6:
(DEFUN OPEN_NODE (M)
(PROG (VAL)
(SETQ OPEN_COUNT (ADD1 OPEN_COUNT))
(PUTPROP M (SETQ VAL (F M)) ’FVALUE)
(SETQ OPEN (INSERT M OPEN))
(PUTPROP M N ’POINTER) ) )

; Put NODE onto LST, which is ordered by 'FVALUE property.
R This value is precomputed for NODE in VAL.
(DEFUN INSERT (NODE LST)
(COND ((NULL LST)(LIST NODE))
((LESSP VAL (GET (CAR LST) ’FVALUE))
(CONS NODE LST))
(T (CONS (CAR LST) (INSERT NODE (CDR LST)))) ) )

In order to test BEST_FIRST_SEARCH we define a function TEST:

(DEFUN TEST ()
(PROG (OPEN_COUNT)
(SETQ OPEN_COUNT 1)
(TRACE OPEN_NODE)
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(PRINT (BEST_FIRST_SEARCH ’RENNES ’AVIGNON))
(PRINT (LIST OPEN_COUNT ’NODES ’OPENED)) ) )

~ The number of nodes opened during this test is 13. Thus, the incorporation
L of the evaluation function led to an improvement over the number, 16, of nodes
opened by BREADTH_FIRST_SEARCH (a blind method).

' 5.4.3 Searching Graphs with Real Distances

\ In the previous section, we made the assumption that the length of a route from
'one city to another is equal to the number of arcs in the path. The actual road
distances were not considered. These distances would, of course, provide a much
. petter basis for the problem of finding a shortest driving route, than can the
pumber of graph arcs on the path. Assuming that we have a measure of the
kilometers along each arc of the graph, the total distance for a route is the sum
of the distances of the arcs that constitute it.

Adding distance information to our graph of French cities, we have the la-
& belled graph of Fig. 5.5.

: We may represent this labelled graph by the following:

(PUTPROP ’BREST °’ ((RENNES . 244)) ’ADJDST)
'RENNES ’ ((CAEN . 176) (PARIS . 348)
(BREST . 244)(NANTES . 107)) ’ADJDST)
"CAEN ° ((CALAIS . 120) (PARIS . 241)
(RENNES . 176)) ’ADJDST)
»CALAIS ’ ((NANCY . 534) (PARIS . 297)
(CAEN . 120)) ’ADJDST)
'NANCY ’ ((STRASBOURG . 145) (DIJON . 201)(PARIS . 372)
(CALAIS . 534)) ’ADJDST)
(PUTPROP ’STRASBOURG ’ ((DIJON . 335) (NANCY . 145)) ’ADJDST)
(PUTPROP ’DIJON ’((STRASBOURG . 335) (LYON . 192) (PARIS . 313)
(NANCY . 201)) ’ADJDST)
(PUTPROP ’LYON ’ ((GRENOBLE . 104) (AVIGNON . 216) (LIMOGES . 389)
(DIJON . 192)) ’ADJDST)
(PUTPROP ’GRENOBLE ’((AVIGNON . 227)(LYON . 104)) ’ADJDST)
"(PUTPROP ’AVIGNON ’ ((GRENOBLE . 227) (MARSEILLE . 99)
; (MONTPELLIER . 91)(LYON . 216)) ’ADJDST)
(PUTPROP ’MARSEILLE ’ ((NICE . 188) (AVIGNON . 99)) ’ADJDST)
{(PUTPROP ’NICE ’((MARSEILLE . 188)) ’ADJDST)
(PUTPROP ’MONTPELLIER ’((AVIGNON . 91) (TOULOUSE . 240)) ’ADJDST)
'(PUTPROP ’TOULOUSE ’ ((MONTPELLIER . 240) (BORDEAUX . 253)
(LIMOGES . 313)) ’ADJDST)
(PUTPROP ’BORDEAUX °’ ((LIMOGES . 220) (TOULOUSE . 253)
(NANTES . 329)) ’ADJDST)
(PUTPROP ’LIMOGES ’ ((LYON . 389) (TOULOUSE . 313)(BORDEAUX . 220)
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Figure 5.5: State space graph with distance (“cost”) information.

(NANTES . 329) (PARIS . 396)) ’ADJDST)

(PUTPROP ’NANTES ° ((LIMOGES . 329) (BORDEAUX . 329)
(RENNES . 107)) ’ADJDST)

(PUTPROP ’PARIS °’ ((CALAIS . 297) (NANCY . 372) (DIJON . 313)
(LIMOGES . 396) (RENNES . 348) (CAEN . 241)) ’ADJDST)

In order to apply the breadth-first search method here, it should be modified
so that it opens new nodes in order of their minimum distance from the start
node. Thus, each time a successor node M of a node N is generated, we should
(a) see whether M is on CLOSED and if so, not consider it further, and if not,
(b) compute its distance from the start node along the path just followed as
Temp = NodeDistance(N) + ArcDistance(M, N), and (c) examine OPEN for
an occurrence of M and if present, compare the value of NodeDistance(M) with
Temp, and if Temp is smaller, delete the old occurrence of M on OPEN, and
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 finally (d) set NodeDistance(M) = Temp, and insert M into its position in OPEN
 according to increasing values of NodeDistance.

I Note that although this method, which we shall call UNIFORM_COST is
E actually blind (there is no evaluation function biasing it to move more quickly
L toward the goal), it does bear some similarity with BEST_FIRST_SEARCH. In
fact, the only substantial difference is in the meaning and computation of the
 node-distance function. In the best-first method, it gave an estimate of a node’s
| proximity to the goal; here it reflects a node’s distance from the start node.
F Besides the difference in where the distance is to or from, there is also a distinct
| difference, in that best-first search uses estimated distances or heuristic ordering
L values, whereas uniform-cost search uses (in theory) exact distances.

i Let us now illustrate the effect on the solution to the French route prob-
i lem brought about by the use of actual road distances and the uniform-cost

algorithm.
‘_; The main searching procedure:

b (DEFUN UNIFORM_COST (START_NODE GOAL_NODE)

E (PROG  (OPEN CLOSED N L)
(SETQ OPEN (LIST START_NODE))  ;stepl
(PUTPROP START_NODE O ’FVALUE)
(PUTPROP START_NODE NIL ’POINTER)

LOOP (COND ((NULL OPEN) (RETURN °FAILURE)))  ;step2

(SETQ N (SELECT_BEST OPEN)) ;step3
(SETQ OPEN (DELETE N OPEN)) ;stepd
(SETQ CLOSED (CONS N CLOSED))
(COND ((EQ N GOAL_NODE) ;stepb
(RETURN (EXTRACT_PATH N))))
(SETQ L (SUCCESSORS N)) ;stepb
(MAPCAR ’OPEN_NODE
(SET_DIFF (SET_DIFF L OPEN) CLOSED))
(GO LOOP) ;step?
))

~ The supporting functions which are new or have definitions that supersede
" those used previously are the following:

- (DEFUN SUCCESSORS (N) (MAPCAR ’CAR (GET N ’ADJDST)))
(DEFUN ARC_DIST (N1 N2) (CDR_SELECT N2 (GET N1 ’ADJDST)))

(DEFUN CDR_SELECT (KEY LST)

-~ (COND ((NULL LST) : if KEY not found
9999) . return a very large value
((EQ KEY (CAAR LST)) (CDAR LST))
(T (CDR_SELECT KEY (CDR LST))) ) )
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(DEFUN F (NODE) (PLUS (GET N ’FVALUE) (ARC_DIST N NODE)))

(DEFUN TEST ()
(PROG  (OPEN_COUNT)
(SETQ OPEN_COUNT 1)
(TRACE OPEN_NODE)
(PRINT ’UNIFORM_COST_SEARCH:)
(PRINT (UNIFORM_COST_SEARCH ’RENNES ’AVIGNON))
(PRINT (LIST OPEN_COUNT ’NODES ’OPENED)) ) )

The result of applying the uniform-cost method here is the path
(RENNES NANTES LIMOGES LYON AVIGNON)

with 16 nodes being opened. As one might expect, the optimal route is different
when real distances are used (as just done here) rather than the number of arcs
along a path in our particular graph.

5.4.4 The A* Algorithm

If the exact distances from the start node can be determined when nodes are
reached, then the uniform-cost procedure can be applied, as we have just seen.
When additionally, some heuristic information is available relating the nodes
visited to the goal node, a procedure known as the A* (pronounced “Eh star”)
algorithm is usually better.

The A* algorithm opens nodes in an order that gives highest priority to nodes
likely to be on the shortest path from the start node to the goal. To do this it
adds g, the cost of the best path found so far between the start node and the
current node, to the estimated distance h from the current node to some goal
node. Provided that the estimate h never exceeds the true distance between the
current node and the goal node, the A* algorithm will always find a shortest path
between the start node and the goal node (this is known as the admissibility of
the A* algorithm).

In a sense, the A* technique is really a family of algorithms all having a com-
mon structure. A specific instance of an A* algorithm is obtained by specifying
a particular estimation function h.

If the estimate h is always zero, A* is certainly admissible. In fact, A* then
is no different from the uniform-cost method. In this case the search algorithm
is called uninformed. The most informed algorithm possible would have h being
the exact distance from the current node to the goal. An algorithm A; is said
to be more informed than an algorithm A, if the heuristic information of A;
permits it to compute an estimate h; that is everywhere larger than hy, that
computed by A,.

The assumption that h never exceeds the true distance between the current
node and the goal allows admissibility to be assured. An additional constraint
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egin
iiput the start node S and the set GOALS of goal nodes;
OPEN « {S}; CLOSED « ¢;
G[S] « 0; PRED[S] — NULL; found « false;
while OPEN is not empty and found is false do
begin
L « the set of nodes on OPEN for which F is the least;
if L is a singleton then let X be its sole element
else if there are any goal nodes in L
then let X be one of them
else let X be any element of L;
remove X from OPEN and put X into CLOSED;
if X is a goal node then found «— true
else begin
generate the set SUCCESSORS of successors of X;
for each Y in SUCCESSORS do
if Y is not already on OPEN or on CLOSED then
begin
G[Y] « G[X] + distance(X,Y);
F[Y] < G[Y] + h(Y); PRED[Y] « X;
insert Y on OPEN;
end
else /* Y is on OPEN or on CLOSED */
begin
Z — PRED[Y];
temp — F[Y]— G[Z] — distance(Z,Y )+
+ G[X] + distance(X,Y);
if temp < F[Y] then
begin
GlY] « G[Y]- F[Y]+temp;
F[Y] «—temp; PRED[Y] « X;
if Y is on CLOSED then
insert Y on OPEN and remove Y from CLOSED;
end;
end;

end;
end;
if found is false then output “Failure”
else trace the pointers in the PRED fields from X back to S, “CONSing”
each node onto the growing list of nodes to get the path from S to X;

- end.

E Figure 5.6: The A* algorithm. It uses real distances and an estimation function
h to efficiently search a state space.
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called the consistency assumption will allow us to assert a kind of optimality
for A*. The consistency assumption is satisfied provided that for any two nodes
rma amd ng, the difference in values of A for those nodes never exceeds the true
distance between n; and ny. The A* method is optimal in the sense that if A
is ore informed than Aj, and the consistency assumption is satisfied, then A,
rniever opens any node not opened by As.

The general form of the A* algorithm is given in Fig. 5.6. Here uppercase
non-italic identifiers represent either fields of nodes or variables whose values are
sets of nodes (e.g., OPEN, L); italic uppercase letters represent variables whoge
values are nodes (e.g., X); and italic lowercase identifiers represent real-valued
or boolean-valued variables (e.g., temp, found) or functions of nodes or pairs
of nodes (e.g., h, distance). In this formulation, each node X has three data
fields associated with it: G[X], the distance from the start node to X along the
shortest path found so far; F[X], the sum of G[X] and h(X); and PRED[X],
the predecessor of X along the shortest known path to X. It is assumed that
distamice(X,Y) gives the length (or cost) of the arc from X to Y.

‘We now provide a LISP implementation of the A* algorithm.

;0 ASTAR.LSP -- The A* Search Algorithm in LISP.
; Finds a minimum-cost path using an evaluation function
; to make the search efficient.

The road distances between cities in kilometers are as for uniform-cost search.
The longitudes (in tenths of a degree) of each city are as for best-first search.

; Let G represent the actual distance from the start node.

» Let H represent the estimated remaining distance to the goal.
; We make F(N) = G(N) + H(N), and use it as an eval. function.
; H is defined to be LongitudeDiff * 10.

; The main searching procedure:

(DEFUN A_STAR_SEARCH (START_NODE GOAL_NODE)
(PROG (OPEN CLOSED N L)
(SETQ OPEN (LIST START_NODE)) ;stepl
(PUTPROP START_NODE O ’GVALUE)
(PUTPROP START_NODE (F START_NODE) ’FVALUE)
(PUTPROP START_NODE NIL ’POINTER)
LOOP (COND ((NULL OPEN) (RETURN ’FAILURE))) ;step2

(SETQ N (SELECT_BEST OPEN)) ;stepd
(SETQ OPEN (DELETE N OPEN)) ;stepd
(SETQ CLOSED (CONS N CLOSED))

(COND ((EQ N GODAL_NODE) ;stepd

(RETURN (EXTRACT_PATH N))))
(SETQ L (SUCCESSORS N)) ;step6

ﬂ
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(MAPCAR ’(0OPEN_NODE
(SET_DIFF (SET_DIFF L CLDSED) OPEN) )

(MAPCAR ’UPDATE_OPEN
(INTERSECT L OPEN) ) ;step?

(MAPCAR ’UPDATE_CLOSED ;This can sometimes be eliminated.
(INTERSECT L CLOSED) )

(GO LOOP) ;step8

) )

The supporting functions are largely those used previously, with a few mod-
ifications:

; For use in step 6:

(DEFUN OPEN_NODE (X)

(PROG  (VAL)
(SETQ OPEN_COUNT (ADD1 OPEN_COUNT))
(PUTPROP X (G X) ’GVALUE)
(PUTPROP X (SETQ VAL (F X)) ’FVALUE)
(SETQ DPEN (INSERT X OPEN))
(PUTPROP X N ’POINTER) ) )

; For use in step 7. Node X, presumably already on OPEN, gets
; its GVALUE recomputed and if the new value is less than
; than the old, the new value is stored and the node is
; repositioned on OPEN.
(DEFUN UPDATE_OPEN (X)
(PROG (VAL)
(SETQ VAL (G X))
(COND ((LESSP VAL (GET X ’GVALUE))
(PUTPROP X VAL ’GVALUE)
(PUTPROP X (F X) ’FVALUE)
(PUTPROP X N ’POINTER)
(SETQ OPEN (INSERT X (DELETE X OPEN)))
1))

The following function is only necessary if the consistency assumption is not
satisfied.

(DEFUN UPDATE_CLOSED (X)
(PROG (VAL)
(SETQ VAL (G X))
(COND ((LESSP VAL (GET X ’GVALUE))
(PUTPROP X VAL ’GVALUE)
(PUTPROP X (F X) ’FVALUE)
(PUTPROP X N ’POINTER)
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(SETQ OPEN (INSERT X OPEN))
(SETQ CLOSED (DELETE X CLOSED))
))))

Here are the functions F, G, and H, and a function TEST which useg
A_STAR_SEARCH to find a path from Rennes to Avignon:

(DEFUN F (N) (PLUS (GET N ’GVALUE) (H N)))
(DEFUN G (M) (PLUS (GET N ’GVALUE) (ARC_DIST N M)

(DEFUN H (N) (TIMES 10 (LONGITUDE_DIFF N GOAL_NODE) ))

(DEFUN TEST ()
(PROG (OPEN_COUNT)
(SETQ OPEN_COUNT 1)
(TRACE OPEN_NODE)
(PRINT (A_STAR_SEARCH ’'RENNES ’AVIGNON))
(PRINT (LIST (GET ’AVIGNON ’GVALUE) ’KILOMETERS))
(PRINT (LIST OPEN_COUNT ’NODES ’OPENED)) ) )

(TEST)

By using ten times the absolute value of the longitude difference to estimate
the distance from the current node to the goal, we obtain a more informed
algorithm than the uniform-cost method. For the test above, we achieve the
same (shortest) route, but we only open 15 nodes, instead of 16. In a more
complicated graph or state space, the savings could well be more dramatic.

5.5 Planning
5.5.1 Problem Solving Before Action

The term planning is used for problem-solving activity whose purpose is to pro-
duce a tentative procedure or guide for accomplishing some task. The tentative
procedure is called a plan. The activity of planning usually involves searching a
space of configurations to find a path that corresponds to the desired sequence
of operations.

We note that ordinary people usually make a clear distinction between
“planning” an action and “performing” an action; planning is regarded as an
information-processing activity whereas performing is considered something me-
chanical. In a computer, the distinction is often unclear, since computers perform
only information-processing actions (unless they are controlling peripheral de-
vices such as robot arms). Consequently, when we describe some problem-solving
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* activity as “planning” we imply that there is some separate activity (which may
well be information processing, or even problem solving) which is to be guided
¥ by the results of the planning.

k- Planning is sometimes carried out with detailed representations of the prob-
¢ lem domain. In other instances, planning may work only with approximations
or even grossly simplified models of the problem domain.

- 5.5.2 A Robotics Example

. Some problems in robotics may be solved by finding a sequence of operations
. that leads from an initial state to a goal state. An example of such a problem is
llustrated in Fig. 5.7. In this situation, there are three blocks, A, B, and C, on

=

Figure 5.7: Robot hand and blocks on a table.

a table top with A stacked on top of B, and there is a robot capable of grasping
¥ one block (from the block’s top only) and moving right or left and up or down
md ungrasping. The problem is to find a way for the robot to stack block C on
¥ top of block B. A solution to this problem may be regarded as a plan since it
i could be used to guide the robot through the mechanical actions to achieve the
physical goal of having C stacked on B. The process of finding such a plan is an
example of planning.
¢ Although there are many methods that could be used to solve this problem,
k. the most straightforward one is to search in the space of configurations of blocks
b and the gripper for a path that leads from the initial configuration to a goal
P configuration. The arcs in the state-space graph correspond to operations that
I the robot can perform.
: Let us consider a set of such operations:

G (Grasp) Close the gripper fingers.

(Open)  Open the gripper fingers.

(Up) Move up one vertical unit (= height of a block).

(Down) Move down one vertical unit.

(Right) Move right one horizontal step (= width of a block plus €).

0
U
D
R
L (Left) Move left one horizontal step.
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If we choose a random sequence of operations and apply them, there is a high
likelihood that there will be a collision of the robot with the table, with a block,
or a block with the table or another block. For purposes of this example, we
assume that any collision will cause damage and therefore any plan to stack C
on B must avoid collisions.

A breadth-first search method could be used to find the plan

ULLDGURDDOURDGUULLDO.

However, since this plan is one of 620 sequences of length 20, the computational
cost of such a search is high.

This planning problem could be made more tractable by making the operators
conditional. This provides a way to restrict the state space to configurations that
do not involve collisions. Then the operator Down would have a precondition
that defines the configurations at which it can be applied:

Precondition for Down:

If the gripper is open then
a. the space directly beneath the gripper is open, and
b. the space directly beneath that one is either open or con-
tains a block (so that the fingers do not collide with the
table);
Else if the gripper is carrying a block then
the space directly beneath the block being carried is open;
else the space directly below the space which is directly under
the gripper is open (i.e., the fingers will collide neither with
the table nor with a block).

C

s 7

Figure 5.8: A configuration of the blocks and gripper that violates the precon-
dition for Down.

Notice that the precondition for Down is not satisfied in the configuration of
Flig. 5.8. Here the fingers, since closed, would collide with C.
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_ 5.5.3 Hierarchical Planning

‘ As we have seen earlier in the chapter, blind search can be improved upon
by incorporating heuristic evaluation functions. Another method to reduce the
B omputational demands of search is to use a hierarchical approach. In order to

¢ develop a plan for a task such as a robot’s establishing block C on top of block B,
it is often possible to identify subtasks for which plans can be developed more
easily, or for which plans or plan generators have been developed in advance.
The plans for the subtasks are then combined, with any adjustments necessary
to make them mutually compatible, to obtain a plan for the full task. Possible
subtasks for the robotics problem are these:

e Clear the top of block B (or more generally, clear the top of any specified
block).

e Move C onto B (or more generally, move any specified block onto any
other specified block).

These two subtasks can themselves be divided into tasks of the following types:
e Move empty gripper to block z.

e Grasp the object under the gripper (making sure the gripper is open prior
to attempting to grasp).

¢ Put down the block currently being held, without dropping, in order to
free the gripper to grasp something else.

- A procedure which generates a plan for a subtask is sometimes called a “macro-
~operator.” For example, one macro-operator is a routine CLEARTOP(z), which
creates a plan to remove any blocks that happen to be on top of block z; this
macro-operator handles the first subtask listed above.

Although in our example so far we have considered a plan to be a sequence
- of elementary operations (arcs in the original state space), we may also consider
~ a sequence of macro-operators to be a plan. Thus, another plan for putting C
- on B is the following:

- CLEARTOP (B)
- PUTON(C,B)

* As with elementary operators, a macro-operator generally has one or more pre-
conditions which must be true of a state in order to make the macro-operator
applicable. Because a macro-operator can be complicated, it is also useful to as-
sociate “postconditions” with it. A postcondition is a property of the state that
results from the operator or macro-operator which is guaranteed to hold. In
addition, it is sometimes useful to associate “invariants” with macro-operators;
an invariant is a feature of a state which is not affected by the macro-operator.
Since, in practice, most state variables are unchanged by any one operator, only
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the possible exceptions to the invariamnces normally need be listed. For the macro-
operator PUTON(z, y) we can easily imagine two preconditions: that r be clear
(no blocks on top of it) and that w e clear. It would be reasonable to assume
that all aspects of the state other than those involving r. y and the gripper
remain unchanged by an applicatiom of PUTON(z,y).

In the two-step plan above fwr putting C on B, a postcondition of
CLEARTOP(B) could assure us that B is clear after CLEARTOP has been
applied. However, there is no corresponding postcondition assuring that ( is
clear, as required for PUTON(C, B). This indicates that the plan may fail when
invoked in some situations. The plan may be regarded as correct if we decide
that it will never be used in situatioms where ' is not clear. However, if these
situations are not ruled out, then the plan contains a bug. In this case, the bug
can easily be fixed by adding the macro-operator CLEARTOP(C) before the call
to PUTON(C, B). To a certain extent, bugs can be prevented by guaranteeing
that as many as possible of the preconditions of operators in a plan are satisfied
in advance. It is also possible to detect many bugs through testing, and then
corrective changes to the plan can e administered.

If the designer of a problem-solvimg system can include a good set of macro-
operators and a mechanism to apply them, this is a good way to fight the com-
binatorial explosion. Better yet is a system which combines macro-operators
with good heuristics that suggest the situations and orders in which the macro.
operators should be applied.

Planning is not fundamentally different from other kinds of problem solving:
the techniques useful in planning are the same techniques useful in most other
kinds of problem solving, e.g., heuristic search.

5.6 Two-Person, Zero-Sum Games

In games like checkers, chess, Go, and Tic-Tac-Toe, two players are involved at
a time. If player A wins, then B loses, etc. Such a game is called a two-person.
zero-sum game. The fact that a gain by one player is equivalent to a loss by the
other leads to a sum of zero overall advantage.

The state-space graphs for two- person, zero-sum games are generally regarded
differently from other state-space graphs. From any particular position in the
game (that is, a state), at issue are the possible moves one or one’s opponent
can make, and what the consequences of each move may be.

In Tic-Tac-Toe, one must try to get three X's in a line, or three O's in a line,
while preventing one’s opponent from attaining such a line. One may settle for
a draw, alternatively. The states from which no further move can be made may
be called final states. The final states fall into three categories: win for X, win
for O, or draw. When a win is impossible or unlikely. the objective may be to
attain a draw. By assigning values to the possible states, the problem of playing
the game becomes one of trying to maximize or minimize the value of the final
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state. Let us now examine a procedure for this.

5.6.1 Minimaxing

If a player has found a path from the current state to a goal state (or a state with
high value). that is not an adequate basis on which to choose a move. Generally
speaking, the opponent does not cooperate; it is necessary to take the opponent’s
probable reactions into account in choosing a move.

The set of states reachable from a given state (using only legal moves of
a game) may be arranged into a game tree. If a particular state is reachable
along two or more alternative paths, we may replicate the state enough times
to allow a tree rather than a general graph to represent the current set of game
potentialities (“If he goes there, then I could go here,” etc.). Let us call the
two players “Max” and “Min.” We can generally assign a value to each possible
state of a game in such a way that Max desires to maximize that value and
Min wants to minimize it. Such an assignment of values is a kind of evaluation
function. In games whose states are defined by the placements of pieces on
boards (like checkers and chess), such an assignment is often called a “board
evaluation function.”

For the game of Tic-Tac-Toe, a board evaluation function is the following:
1004 + 10B + C — (100D + 10F + F) where A is the number of lines of three
X’s, B is the number of unblocked lines with a pair of X's and C is the number
of unblocked lines with a single X. Similarly F, F, and G give numbers of lines
of O’s in various configurations.

A game tree for Tic-Tac-Toe is shown in Fig. 5.9. Each level of nodes in the
tree is called a ply. Ply 0 contains only a single node, corresponding to the current
board position. Ply 1 contains the children of the root of the tree. Typically, a
game-playing program will generate all the board positions for nodes down to a
particular ply such as 4. It will then evaluate the leaves (tip nodes) of that 4-level
tree with the board evaluation function, obtaining what are called static values.
Then a process of backing values up the tree is begun. If the root corresponds
to a position where it is Max’s move, then all even-numbered ply contain “Max
nodes” and all odd-numbered ply contain “Min nodes.” To back up the value to
a Max node, the maximum child value is written into the node. For a Min node.
the minimum child value is taken. Backing-up proceeds from the leaf nodes up,
until the root gets a value. Max’s best move (given, say, a 4-ply analysis) is the
move which leads to the largest value at a leaf node. given that Max always will
maximize over backed-up values and that Min will always minimize. The value
thus associated with each non-leaf node of the tree is the node’s “backed-up
value.” While the backed-up value for a node is being computed, and after the
backed-up value for the node’s first descendant has been computed, the node has
a “provisional backed-up value,” which is the current minimum (or maximum,
depending on whose move it is at the node). The positions shown in Fig. 5.9
are numbered according to the order in which they would be generated. The six
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Figure 5.9: Game tree for Tic-Tac-Toe.

leaf nodes are labelled with their static values. Nodes 2 and 6 are labelled with
their backed-up values. Since the root corresponds to a position where O, the
minimizing player, is to move, choosing between positions 2 and 6, it is clear
that O prefers 2 with value 1 over position 6 with a value of 91.

5.6.2 AND/OR Graphs

Game trees with Min and Max nodes have a counterpart in problem-solving; they
are called AND/OR trees, and more generally, AND/OR graphs. An AND/OR
tree expresses the decomposition of a problem into subproblems, and it allows
alternative solutions to problems and subproblems. The original problem corre-
sponds to the root of the AND/OR tree. At an AND node, all the child nodes
must be solved in order to have a solution for the AND node. At an OR node, at
least one of the children must be solved, but not necessarily any more than one.
An AND/OR tree is illustrated in Fig. 5.10. The overall goal for this example is
to prepare a main course for a dinner. Disjunctive subgoals of the main goal are

1
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b «umake hamburgers” and “make roast turkey.” Conjunctive subgoals of “make
k. hamburgers” are “prepare patties” and “toast buns.” In an AND/OR tree (or

PREPARE MAIN COURSE

MAKE MAKE
HAMBURGERS ROAST TURKEY

55 TE0

' REPARE ~ TOAST PREPARE MAKE MAKE
tPATTIES BUNS TURKEY DRESSING GRAVY
ITSELF

Figure 5.10: An AND/OR tree.

 for that matter, an AND/OR graph), a node is solved if
L o it is an OR node and at least one of its children is solved, or
e it is an AND node, and all of its children are solved, or

e it is a leaf node, and problem-dependent criteria associated with the node
are satisfied.

| In the above example, the problem-dependent criteria are “patties prepared,”
. “buns toasted,” etc.

] A solution graph for an AND/OR graph (or tree) is a subgraph of the original
b consisting of a set of solved nodes and the arcs connecting them that make the
. root node solved. The root of the original graph is a necessary part of a solu-
L tion graph. For the example of Fig. 5.10, there are two solution graphs; one of
F these consists of the nodes, PREPARE MAIN COURSE, MAKE HAMBURG-
I ERS, PREPARE PATTIES, and TOAST BUNS, together with the arcs that
L connect these nodes. The solution to the problem (or to any subproblem) may
| be defined recursively: if the (sub)problem corresponds to a leaf node N, then
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its solution is given by the satisfaction of the appropriate problem-dependent
criteria; otherwise, the (sub)problem corresponds to an interior node N, and its
solution consists of the subproblems which correspond to the children of N con-
tained in the solution graph, together with their solutions. In this example, the
solution may be considered to be a set of plans one of which is simply MAKE
HAMBURGERS, and another of which is PREPARE PATTIES and TOAST
BUNS.

An AND/OR graph may sometimes be used to represent the state space for
a game. For example, in a game of Tic-Tac-Toe, we may consider the objective
to be solving a problem; that problem is to win the game. For the “X” player,
the problem is clearly solved if the current position contains three X’s in a row
and does not contain three O’s in a row. Any position is solved if X has a win at
it or can force a win from it, and otherwise, it is not solved. If it is X’s move, X
can force a win if any of the successor positions to the current one is solved. If
it is O’s move, then X can force a win only if all of the successors of the current
position are solved. In order to use an AND/OR graph as a basis for playing
the game, it must be computationally feasible to generate the entire graph for
the current position. Consequently, AND/OR graphs are usually of use only for
relatively simple games, for which the number of moves in a game can never get
larger than, say, 15 or 20. On the other hand, the minimaxing approach can
handle more complex games, because it allows the use of heuristic evaluation
functions that avoid the necessity of constructing the entire game tree.

5.6.3 Alpha-Beta Search

In order to play well, a program should examine alternative lines of play to ply as
deep as possible. Unfortunately, the number of possible board positions in a game
tree tends to grow exponentially with the number of ply. It is usually possible
to prune off subtrees as irrelevant by looking at their roots in comparison with
alternative moves at that level. For example, in chess, one may be examining a
line of play in which it suddenly is discovered that the opponent could capture the
queen, while nothing would be gained, and actually a better move is available.
Then there is no point to examining alternatives in which the opponent kindly
does not take the queen. By assumption, each player is trying to win: one by
maximizing and one by minimizing the evaluation function value. When such an
irrelevant subtree is discovered, it is generally called a “cutoff.” A well-known
method for detecting cutoffs automatically is the “alpha-beta” method.

Let us consider an example in a game of checkers. We assume that the game
has progressed to the position shown in Fig. 5.11, with black to move. The three-
ply game tree for this position is shown in Fig. 5.12. The moves are examined in
an order that considers pieces at lower-numbered squares first, and for alternative
moves with the same pieces, considers moves to lowest-numbered squares first.
Black has four possible moves from the position shown, and so there are four
branches out from the root of the tree. The first move to be considered is to

N
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1 2 3 4
6 7 8
9 10 11 12
14 15 16
17 18 19 20
)
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22 23 24
’ 25 26 27 28
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30 = 32
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Figure 5.11: Checkers position with Black to Move.
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Figure 5.12: A three-ply game tree for the checkers position.
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| move the man at square 20 to square 16. To this, Red has six possible replies,
b the first of which is 22 — 17. In this case, Black must then jump with 21 — 14.
. This position is in ply 3 and should be evaluated statically. We use the following
| evaluation function:

51 + T2

. Here z; represents Black’s king advantage (the number of black kings minus the
E number of red kings), while 2 represents Black’s single-man advantage.

1 The static value of the first ply-3 position is therefore 6. This value is backed
| up to the previous node, and it also becomes the provisional backed-up value
E for the predecessor of that node (the first descendant of the root). The second
. Red reply to Black’s 20 — 16 is now considered; 22 — 18 leads to five alterna-
k. tives for Black, each of which results in some position with static value 1. The
b maximum of these is, of course, also 1, and this value is the backed-up value of
the position resulting from Red’s second alternative. This value, 1, is less than
L the provisional backed-up value (6) of the predecessor node, and since Red is
minimizing, replaces 1 as the provisional value. Red’s four other alternatives
:i lead to backed-up values of 1, 6, 1, and 2, and since none of these is less than
B the current provisional backed-up value of 1, the final backed-up value for the
= first descendant of the root is 1.

Black’s second alternative (21 — 17) leads to a position with backed-up value
’ 0. Since Black is maximizing, this move is clearly inferior to the first.

’. Black’s third alternative, 31 — 26, brings out an interesting phenomenon.
Red’s first alternative for a reply gives Black two choices, each leading to a static
b value of —4. Thus Red can force Black into a situation much less favorable than
. if Black were to choose the first or second move in the first place. In other words,
after computing the backed-up value of the position after Red’s first (and in this
L case, only) alternative (22 — 31), this value becomes the provisional value of
i the preceding position; but here a comparison is made: if this provisional value
s less than any of the backed-up values already determined for this ply, the
I move is certainly inferior, and further evaluation of positions in this subtree can
i be bypassed. We say here that an alpha cutoff occurs at this node. Were the
L other positions of this subtree to be evaluated, the result would be that the
backed-up value of the position after 31 — 26 is —8, which is even worse than
L the provisional value of —4. But, even if the other positions had high values,
E the effort to evaluate these positions would be wasted, since Red would always
. choose the alternative least favorable to Black.

1 Black’s fourth alternative (the last) is 31 — 27. This leads to ply-3 positions
L of value —8, making this move inferior. Black’s best move is clearly the first,
. according to the 3-ply analysis we have performed.

We saw how an alpha cutoff was used in analyzing Black’s third alternative,
to avoid evaluating some of the positions in the full 3-ply tree. Such cutoffs
can be systematically determined with the alpha-beta pruning procedure. Alpha
cutoffs are used at minimizing levels, while beta cutoffs are used at maximizing
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levels. Let A be a maximizing-level node for which k& alternatives have been tried,
the maximum backed-up value of these being alpha. Let B be the minimizing.
level node which is the result of the next alternative from A. As soon as any
immediate descendant of B receives a backed-up value that is less than alpha,
further consideration of the subtree at B is unnecessary (an alpha cutoff occurs),

Similarly, let C be a minimizing-level node for which k alternatives have
been tried, the minimum backed-up value of these being beta. Let D be the
maximizing-level node which is the result of the next alternative from C. Ag
soon as any immediate descendant of D receives a backed-up value which ig
more than beta, the remaining positions in the subtree at D can be ignored (a
beta cutoff occurs).

If the search tree is explored in an order that improves the likelihood of cut-
offs, the alpha-beta pruning procedure can typically eliminate more than half
of the nodes that would have to be evaluated in checkers and chess situations.
One way to increase the chances of getting useful cutoffs is to apply the evalua-
tion function to each of the ply-1 positions and to order the exploration of the
corresponding subtrees in a best-first fashion.

5.7 Bibliographical Information

Depth-first, backtracking search was used extensively in early problem-solving
systems such as GPS (“General Problem Solver”) [Newell et al. 1959]. Heuristic
search techniques were studied by Pohl [Pohl 1969] and Sandewall [Sandewall
1969]. AND/OR trees and graphs were studied by Slagle and Dixon [Slagle 1963],
[Slagle and Dixon 1969]. A thorough presentation of problem representation and
state-space search, including proofs for the admissibility and the optimality of
the A* algorithm, may be found in [Nilsson 1971]. Section 5.4.3 on pruned,
best-first search is based upon material from [Nilsson 1971] and from [Barr and
Feigenbaum 1981]. A good source of heuristics for mathematical problem solving
is [Polya 1957].

Research in automatic planning for robots has derived benefit from, and had
a positive impact upon general problem-solving technology [Newell and Simon
1963, [Fikes and Nilsson 1971]. Hierarchical planning was explored with the AB-
STRIPS system [Sacerdoti 1974] and in NOAH [Sacerdoti 1977]. Together with
hierarchical planning, the use of constraints in developing plans for genetic en-
gineering experiments was demonstrated in the MOLGEN system [Stefik 1981a,
b].

A successful checkers-playing program was developed in the late 1950's
[Samuel 1959], and chess has received substantial attention since then [New-
born 1975], [Berliner 1978]. Efforts have also been made to computerize the
playing of backgammon [Berliner 1980] and Go [Reitman and Wilcox 1979]. Go
is considerably different from chess and checkers in that the game trees for it
are so wide (there are typically hundreds of alternatives from each position)

N
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that normal minimax search is impractical for it. It has been suggested that
b principles of perceptual organization be incorporated into Go-playing programs
 [Zobrist 1970]. The use of plans in playing chess is described in [Wilkins 1980].
The efficiency of alpha-beta search is examined in [Knuth and Moore 1975].
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Exercises

1. Define the following terms:

(a) “state space”
(b) “goal state”
(¢) “move generator”
(d) “heuristic”
(e) “backtrack search”
2. Brute-force approaches to searching can even get swamped by “toy” prob-
lems.

(a) How many distinct states are there in the state space for the version
of the painted squares puzzle shown in Fig. 5.17

(b) What are the maximum and minimum numbers of states that there
might be in a 4-square case of the puzzle?

A
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(c) Suppose that each square in Fig. 5.1 can be flipped over, and that
each side is painted with the same pattern on both faces of the square.
What is the number of distinct arrangements of the four pieces in the
2 x 2 space?

(d) Let us define a “quadramino” as any arrangement of four of the
squares of a square tiling of the plane, such that the four form a single
connected group. Two such arrangements that are alike except for
a translational displacement will be considered as equivalent. If the
four pieces of Fig. 5.1 may be placed in any quadramino arrangement
and the pieces may be flipped, what is the total number of distinct
arrangements of the four squares?

_ What is the maximum distance (where distance is measured as the num-
ber of arcs in the shortest path between two nodes) between the initial
state and a goal state, in a 4-square version of the painted squares puzzle
(assuming that there is a goal state for the version!).

. The way in which the squares are painted in a version of the painted
squares puzzle apparently affects not only the number of solutions that
exist, but the efficiency with which the backtracking algorithm finds a so-
Jution. Give an example of a version of the puzzle in which many solutions
exist, but for which a lot of backtracking is required.

. The solution to the painted squares puzzle in the text suffers from an in-
efficiency: pieces already placed are repeatedly rotated by the ORIENT
function. Implement a version of the solution which avoids this redun-
dancy. Determine experimentally how many calls to ROTATE_LIST are
used by the old and new versions.

. Suppose that the rules for the painted squares puzzles are changed, so
that (a) a starting configuration consists of all the squares placed to fill
the rectangular space, but not necessarily having their sides matching, and
(b) two kinds of moves are allowed: (i) the rotation of a piece clockwise
90 degrees and (ii) interchanging a piece with an adjacent piece. What is
the maximum number of states that there could be in the state space for
an instance of this puzzle having a 4 by 4 rectangle (16 squares)? What
is the minimum number of states that there might be?

. In Chapter 4, it was shown how knowledge about objects could be orga-
nized in an inclusion hierarchy. Suppose that it is desired to build a more
knowledge-based solver for the painted squares puzzles. The (hypothet-
ical) approach is to first classify the squares according to types, where
the types are based on the ways the squares are painted. Then, when a
vacancy is to be filled that requires a particular kind of piece, the program
examines various kinds of pieces that it has examples of, testing to see if
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the kind of piece found “ISA” piece of the type required. Describe how
types of painted squares could be defined so that an interesting inclusion
hierarchy could be set up (without doing any programming).

. A “straight-line dominoes” puzzle consists of a set of dominoes, and the

object of the puzzle is to lay all the dominoes in a straight line so that the
adjacent ends match. Discuss the difficulty of this kind of puzzle. How
would a program to solve such puzzles be constructed?

. The Four-peg version of the Towers of Hanoi puzzle is stated as follows:

Four pegs, called A, B, C, and D, can each hold n rings at a time. There are
n rings, Ry, Ry, ..., Ry, such that R; is smaller than R; whenever i < j.
A legal placement of the rings on the pegs requires that (1) whenever any
two rings appear on the same peg, the smaller one is above the larger one,
and (2) all » rings must be on pegs. The starting placement consists of all
rings placed on peg A. The goal placement consists of all rings placed on
peg D. Describe a representation for the states of the space to be searched.
Describe a procedure that generates the successors of a state.

Using the data and function definitions in the text, compare the solu-
tions found by the method DEPTH_FIRST_SEARCH with those found
by BREADTH_FIRST_SEARCH for the problems of finding paths from
PARIS to STRASBOURG, STRASBOURG to PARIS, BORDEAUX to
LYON, and LYON to BORDEAUX.

(a) What are the paths found?

(b) What conclusions can you make?

(c) Which procedure is more sensitive to the order in which the cities
neighboring each city appear on the property list?

(d) Describe alternative data for which the two procedures would perform
equally efficiently.

Modify the function DEPTH_FIRST_SEARCH, and thus create a new
function QUASI_DEPTH_FIRST_SEARCH, by having the list L con-
catenated onto the beginning of OPEN after culling members which are
also present on either OPEN or CLOSED. The result of evaluating
(QUASI_DEPTH_FIRST_SEARCH ’RENNES ’AVIGNON)
should be
(RENNES CAEN CALAIS NANCY DIJON LYON AVIGNON).

Find the result of evaluating:
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(QUASI_DEPTH_FIRST_SEARCH ’AVIGNON *RENNES) .

If the adjacency information were reordered, would it be possible for
QUASI_DEPTH_FIRST_SEARCH to ever find the longest path from
Rennes to Avignon? (Such a longest path has 13 arcs.) Describe the
kinds of paths that can be found with this variation.

Figure 5.13 shows the board and initial configuration for the puzzle “Cycle-
Flip.” The object is to transform the initial configuration into the goal
configuration through a sequence of legal moves. The lettered nodes are
called islands and the lines connecting them are called gaps. An oval on a
gap indicates a bridge. For example, in the initial configuration there is a
gap A-B, but A-C is not a gap. The gap B-C is bridged, but A-B is not. A

Figure 5.13: Initial configuration for “Cycle-Flip.”

cycle is a sequence of gaps that are alternately bridged and unbridged that
progress from island to island, forming a circuit of even length with no
subcircuits. For example, (A-E, E-I, I-F, F-A) is a cycle, but (A-B, B-C,
C-F, F-A) is not. Note that the former can be expressed more concisely
as AEIF. We consider AEIF to be equivalent to EIFA, etc. A flip along
a cycle is the act of making all the bridged gaps on the cycle unbridged
and vice-versa. A legal move in Cycle-Flip is a flip along a cycle of length
4 or 6. The goal configuration is illustrated in Fig. 5.14.

(a) Describe a state-space representation for the game.

(b) Draw a piece of the state-space graph for the game which contains a
solution path.

(¢) Explain how this solution could be found automatically.

(d) Decide whether the solution is unique and explain why or why not.
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Figure 5.14: Goal configuration for “Cycle-Flip.”

13. The plan for placing block C atop B on page 165 requires that 20 opera-
tions be performed by the robot. Suppose that the robot need not lift a
block off a surface to move it left or right, but may slide it along. Give
a shorter sequence of operations that accomplishes the task. Finally, sup-
pose that no damage is done either by sliding or dropping blocks. What
is the shortest plan that can be used now?

14. Develop a LISP program that uses breadth-first search to solve the robot
planning problem in the text, employing preconditions on the operators.
Explain and demonstrate how the choice of preconditions affects the time
required to find a plan.

(a) Use only preconditions that prevent collisions and prevent attempts
to close the gripper when it is already closed or to open it when
already open.

(b) Add preconditions that allow the robot only three legal horizontal
positions.

(c) Add a precondition that allows the robot only three legal vertical
positions.

(d) Add preconditions that prevent opening or closing the gripper if there
is no block between the fingers.

15. The (n,k) version of “Last One Loses” starts with a stack of pennies,
n high. Two players, “Plus” and “Minus,” alternate moves with Minus
making the first move. In each move, a player may remove up to k pennies
from the stack, but he must remove at least 1. The player stuck with
the last move is the loser. Let the game configuration be represented
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as W(N)o, where N denotes the current number of pennies left, and o
is either “+” or “—” and indicates whose move it is. Note that W(0)+
and W(0)— can never be reached, since W(1)+ and W(1)— are terminal
configurations.

(a) Draw the AND/OR graph for the case (n, k) = (9, 3).

(b) Superimpose the solution graph for the same case (by hatching se-
lected arcs of the AND/OR graph) that proves Plus can always force
a win.

(c) For which (n, k) pairs is Last One Loses a determined game? Who
wins in each case? By what strategy?

. The game tree in Fig. 5.15 illustrates the possible moves, to a depth of 4,
that can be made from the current position (at the root) in a hypothetical
game between a computer and a human. The evaluation function is such
that the computer seeks to maximize the score while the human seeks
to minimize it. The computer has 5 seconds to make its move and 4 of
these have been allocated to evaluating board positions. The order in
which board positions are evaluated is determined as follows: The root is
“searched.” A node which is at ply 0, 1, 2, or 3 is searched by

e generating its children,
e statically evaluating the children,

e ordering its children by static value, in either ascending or descending
order, so as to maximize the probability of alpha or beta cutoffs
during the searches of successive children,

e searching the children if they are not in ply four, and

e backing up the minimum or maximum value from the children, where
the value from each child is the backed-up value (if the child is not
in ply four) or the static value (if the child is in ply four).

The computer requires 1/7 seconds to statically evaluate a node. Other
times are negligible (move generation, backing up values, etc.). The com-
puter chooses the move (out of those whose backed-up values are complete)
having the highest backed-up value.

(a) Give the order in which nodes will be statically evaluated (indicate
the it* node by putting the integer i in the circle for that node).
Hint: the first 8 nodes have been done for you. Be sure to skip
the nodes that alpha-beta pruning would determine as irrelevant.
Indicate where cutoffs occur. :

(b) Determine the backed-up values for the relevant nodes. (Fill in the
squares.) Node Q has been done for you.
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(c) Keeping in mind that it takes 1/7 seconds per static evaluation, what
will be the computer’s move?

(d) Now assume that it takes 1/8 seconds per static evaluation. What
will be the computer’s move?

17. Write a LISP program that plays “Tic-Tac-Toe” according to the scheme
described on page 169 in the notes.

¢ You should be able to easily set the maximum depth of the program’s
search to any given ply.

¢ Include a function PRINTBOARD which shows a given board posi-
tion in a neat format.

o Illustrate your program’s behavior for 8 games as follows: 2 games
at each of the four following maximum search depths: 1, 2, 4, and
6. In each pair, the human should play differently. In each game,
show the board position after each of the actual moves chosen by
your program. You may have the program play either O’s or X’s,
but indicate which side the program is playing.

e After each board position printed, print out the number of times the
evaluation function was computed to determine the move just made.

o At the end of each game, print out the number of times the evaluation
function was applied to board positions during that game.

e Describe the tradeoff you observe between computation time (as mea-
sured by the number of computations of the evaluation function) and
the skill of the program.

18. (term project) Write a program to play “Baroque Chess.” This game is
played with conventional chess pieces and set up as usual, except that
the King’s side rook for each player is turned upside-down. However, the
names of pieces are changed, as are the rules of the game. The Baroque
Chess names of the pieces are given below following their common names.

Pawn = “Squeezer”
Knight = “Leaper”
Bishop = “Imitator”
(right-side-up) Rook = “Freezer”
(upside-down) Rook = “Coordinator”
Queen = “Step-back”
King = “King”

Most of the pieces may move like the Queens of ordinary chess. Excep-
tions are the Squeezers, Leapers (when capturing) and the Kings. How-
ever, many pieces have special requirements for making captures. The
particular characteristics of each kind of piece are now given.
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current position (computer to move)
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Order in which node D hacked-up value
is statically evaluated for node

Static values for nodes: A4, B15,C 13,D 10, E20,F 9, G 8,H 10,110,
J8,K5,L20,M3,N7,06,P0,09,R12,S10,T15,U 10,V9, W7,
X22,Y2,27, AAS5, BB8,CC 15 DD 12, EE 13, FF 13, GG 20, HH 22, 11 18.

Figure 5.15: A hypothetical game tree.
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¢ Squeezer—moves like a rook of ordinary chess, vertically or hori.
zontally any number of squares. In order to capture an opponent’s
piece, the Squeezer must be moved so as to “sandwich” the piece be.
tween the Squeezer and another Squeezer. Two Squeezers sandwich
an opposing piece by being on either side of it, either horizontally or
vertically.

e Freezer—moves like a Queen. It does not capture other pieces. How-
* ever, when it is adjacent (in any of the 8 neighboring squares) to an
opponent’s piece, the opponent may not move that piece.

e Coordinator—moves like a Queen. The Coordinator’s row and the
same player’s King’s column determine the location of a square on
the board. If the coordinator is moved so as to make this square one
where an opponent’s piece stands, the piece is captured.

o Leaper—moves like a Queen, except that when capturing, it must
complete its move by jumping over the piece it captures to the next
square in the same line; that square must be vacant to permit the
capture.

e Step-back—moves (and looks) like a Queen. However, in order to
capture a piece, it must begin its move in a position adjacent to the
piece (i.e., in any of the 8 neighboring squares), and then it must
move exactly one square in the direction away from the piece.

¢ King—moves (and looks) like a normal chess King, and it captures
like a normal chess King; ( however, there is no “castling” move in
Baroque Chess). The game is finished when a King is captured (there
is no checkmating or need to say “check” in Baroque Chess).

¢ Imitator—normally moves like a Queen. However, in order to cap-
ture a piece, an Imitator must do as the captured piece would do
to capture. In addition, if an Imitator is adjacent to the opponent’s
Freezer, the Imitator freezes the Freezer, and then neither piece may
be moved until one of the two is captured.

Making the game even more interesting is a rule which makes all the cap-
tures implied by a move effective. For example, a Squeezer may move to
simultaneously sandwich two opposing pieces and capture both of them.
Another example would be a situation where an Imitator, in one move,
steps back from a Step-back (capturing it) and in its new position sand-
wiches a Squeezer and captures it.



Chapter 6

Logical Reasoning

6.1 Motivation

" In Chapter 4 we saw how deductions of the following form could be made by a
computer program: Given that a dog is a mammal and a mammal is an animal,
it may be concluded that a dog is an animal. This deduction was performed
by simply applying the transitivity rule known to hold for the ISA relation.
While useful, this kind of deduction is relatively restricted, and a more general
capability is usually needed. By using mathematical logic, we will gain a good
measure of generality.

There are several pioneers of artificial intelligence who believe that mathe-
matical logic provides the best knowledge representation language. Some groups,
such as the leaders of Japan’s “Fifth Generation Project” are betting that pro-
gramming in languages that resemble or are based on the predicate calculus will
be the way of the future. Whether or not they are right, logic and algorithms
for working with logic are important. There can be no doubt, however, that the
methods of logic are powerful and that they are worth careful study by anyone
interested in automatic problem solving.

We begin our exploration of the use of mathematical logic in computer deduc-
tion by illustrating several simple approaches that use the propositional calculus.
Then we turn to the more powerful predicate calculus and examine some heuris-
tics and strategies for trying to prove proposed conclusions.

6.2 Proofs in the Propositional Calculus

6.2.1 Perfect Induction

The propositional calculus provides a relatively simple framework within which
basic concepts of automatic theorem proving can be illustrated. Below is an
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example of some statements that express information from which we wish to
answer a question.

If thunk is an English verb, then thunk is an English word. If
thunk is an English word, then thunk is in Noah’s Lexicon. Thunk
is not in Noah’s Lexicon.

Is thunk an English verb?

In order to express these statements (and a statement derived from the question)
in the propositional calculus, we must agree on a set of atomic propositions. One
suitable set of atomic propositions is the following:

e P: Thunk is an English verb.
o (): Thunk is an English word.
o R: Thunk is in Noah’s Lezicon.

The original statements we call premises. The premises expressed in proposi-
tional calculus are now as follows:

P—-Q,Q—R-R

The question would be answered if we could prove the proposition P from the
premises, or alternatively if we could prove —=P. Since this is a small problem,
we can easily employ an exhaustive examination of all possible assignments of
truth values to the propositions P, Q and R to check for the validity of either
possible conclusion. All the possible combinations are listed in the truth table
shown in Fig. 6.1.

Trial
Variables Premises Conclusions

PIQ|IR|P-QIiQ—-R|I-R| P =P
T|T|T T T F T F
T T!F T F T T F
T|IF|T F T F T F
T|F | F F T T T F
F|T|T T T F F T
F|T|F T F T F T
FI{F | T T T F F T
F|F|F T T T F T

Figure 6.1: Truth table used in answering the question of whether or not thunk
is an English verb.
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We first check the validity of P as a conclusion by examining every row in
which all three premises are true. The conclusions must also be true in these
rows. In this example there is only one row where all premises are true (the
bottom row). We see here that the potential conclusion P is false here (and
therefore not the correct answer) whereas -P is true and corresponds to the
correct answer: Thunk is not an English verb.

The truth-table method just illustrated is called perfect induction. Construct-
ing truth tables can easily be a big job even for a computer if there are more
than just a few propositional symbols. With n symbols, a truth table requires
on rows. Consequently, other methods have been developed for proving conclu-
sions from premises. One of these is Wang’s algorithm. While in the worst case,
Wang’s algorithm may still require O(2") time to prove a theorem, it usually is
much faster.

6.2.2 Wang’s Algorithm

To begin proving a theorem with Wang’s algorithm, all premises are written on
the left-hand side of an arrow that we may call the “sequent arrow” (=, ). The
desired conclusion is written to the right of the sequent arrow. Thus we have:

P—Q,QQ—- R -R=,P

This string of symbols is called a “sequent.” This particular sequent contains
four “top-level” formulas; there are three on the left and one on the right. (It
contains more than four formulas if we count embedded ones such as the formula
" PinP—Q.)

Successively, we apply transformations to the sequent that break it down into
simpler ones. The general form of a sequent is:

Fl«,~--~,Fm s Fm+1-,-~'7Fm+na

where each F, is a formula. Intuitively, this sequent may be thought of as
representing the larger formula,

Fl/\"'/\Fm_)F7n+lv"'VFm+n-
Here are the transformation (R1 through R5) and termination (R6 and R7) rules:

¢ R1: If one of the top-level formulas of a sequent has the form -X, we may
drop the negation and move X to the other side of the sequent arrow.
Here X is any formula, e.g., (P V —Q). If the negation is to the left of the
sequent arrow, we call the transformation “NOT on the left;” otherwise it
is “NOT on the right.”

e R2: If a top-level formula on the left of the arrow has the form X AY,
or on the right of the arrow has the form X VY, the connective may be
replaced by a comma. The two forms of this rule are called “AND on the
left” and “OR on the right,” respectively.
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e R3: If a top-level formula on the left has the form X VY, we may replace
the sequent with two new sequents, one having X substituted for the
occurrence of X VY, and the other having Y substituted. This is called
“splitting on the left” or “OR on the left.”

e R4: If the form X A'Y occurs on the right, we may also split the sequent
as in Rule R3. This is “splitting on the right” or “AND on the right.”

. R5: A formula (at any level) of the form (X — Y) may be replaced by
(=X VY), thus eliminating the implication connective.

e R6: A sequent is considered proved if some top-level formula X occurs
on both the left and right sides of the sequent arrow. Such a sequent is
called an aziom. No further transformations are needed on this sequent,
although there may remain other sequents to be proved. (The original
sequent is not proved until all the sequents obtained from it have been
proved.)

e R7: A sequent is proved invalid if all formulas in it are individual proposi-
tion symbols (i.e., no connectives), and no symbol occurs on both sides of
the sequent arrow. If such a sequent is found, the algorithm terminates:
the original “conclusion” does not follow logically from the premises.

We may now proceed with the proof for our example about whether thunk is
an English verb. We label the sequents generated starting with S; for the initial
one. The proof is shown in Fig. 6.2.

Wang’s algorithm always converges on a solution to the given problem. Every
application of a transformation makes some progress either by eliminating a
connective and thus shortening a sequent (even though this may create a new
sequent as in the case of R3), or by eliminating the connective “—”. The order in
which rules are applied has some bearing on the length of a proof or refutation.
but not on the outcome itself.

6.2.3 Wang’s Algorithm in LISP: “PROVER”

The program PROVER, which is listed below, provides an implementation of
Wang’s algorithm. Like the programs SHRINK and LEIBNIZ of Chapter 3. it
uses the function MATCH extensively.

The first function, “PROVER,” has the same name as the program as a whole.
and it is the top-level function. To run the program the user types (PROVER)
and responds to the prompts it gives. PROVER consists of a PROG form that
implements an indefinite loop. In each cycle, a logical expression is accepted from
the user; then it is checked for being well-formed, and it is converted so that the
logical connective IMPLIES is eliminated, and then it is passed to VALID1 as
the right-hand side of a sequent whose left-hand size is NIL. If the result is that
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Label  Sequent Comments

S1: P > Q,Q — R,~R=, P Initial sequent.

S2: -PVvQ,-QV R,-R=,-P Two applications of R5.

S3: -PvQ,~-QVR=,-PR R1.

S4: -P,-QVR=,-PR S4 and S5 are obtained from S3
with R3. Note that S4 is an ax-
iom since P appears on both sides
of the sequent arrow at the top

level.

Sh: Q,~QVR=,-PR The other sequent generated by
the application of R3.

S6: Q.-Q=,-PR S6 and S7 are obtained from S5
using R3.

ST: Q.R=>, PR This is an axiom.

S8: Q =, P RQ Obtained from S6 using R1. S8 is

an axiom. The original sequent is
now proved, since it has success-
fully been transformed into a set
of three axioms with no unproved
sequents left over. B

Figure 6.2: A proof using Wang’s algorithm.

the expression is a tautology, then the PROVER prints “VALID” and otherwise
it prints “(NOT VALID)".

; PROVER.LSP -- Verifies propositions using Wang’s algorithm
(DEFUN PROVER ()

(PROG (S)
LOOP (PRINT ’(PLEASE ENTER PROPOSITION OR H OR R))
(TERPRI)
(SETQ S (READ))
(COND ((EQ S ’H) ; H is the HELP command...

(PRINT ’(HERES AN EXAMPLE))
(PRINT ’((A AND (NOT B)) IMPLIES A)) )
((EQ S ’R) (RETURN NIL)) ; R is the RETURN command.
(T (COND ((VALID1 NIL (LIST (FORMAT $S)))

(PRINT ’VALID)

(TERPRI))
(T (PRINT ’(NOT VALID))) )) )
(GO LOOP) ) )
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Although the function PROVER is the top-level function, the recursive functioy
VALID1 does most of the work. It is implemented in a production-rule style
where each production rule is one of Wang’s rewriting rules, except the first
production rule, which tests to see if a sequent is an axiom (i.e.. that there is 4
nontrivial intersection of the left-hand and right-hand sides of the sequent).

(DEFUN VALID1 (L R) ;check validity with Wang’s rules.
. ; L is the left side of the sequent.
; R is the right side of the sequent.
(PROG (X Y Z)
(RETURN
(COND
((INTERSECT L R) T) ;test for axiom
;NOT on the left...
((MATCH ’ ((* X) (NWFF Y) (* Z)) L)
(VALID1 (APPEND X Z)
(APPEND R (CDR Y)) ) )
;NOT on the right...
((MATCH * ((* X) (NWFF Y) (* Z)) R)
(VALID1 (APPEND L (CDR Y))
(APPEND X Z) ) )
;OR on the right...
((MATCH ’((* X) (ORWFF Y) (x Z)) R)
(VALID1 L
(APPEND X (LIST (CAR Y)) (CDDR Y) Z) ) )
;AND on the left...
((MATCH ’> ((* X) (ANDWFF Y) (x Z)) L)
(VALID1 (APPEND X (LIST (CAR Y)) (CDDR Y) Z)
R) )
;O0R on the left...
((MATCH ’ ((* X) (ORWFF Y) (* Z)) L)
(AND (VALID1 (APPEND X (LIST (CAR Y)) Z) R)
(VALID1 (APPEND X (CDDR Y) Z) R) ) )
;AND on the right...
((MATCH > ((* X) (ANDWFF Y) (x Z)) R)
(AND (VALID1 L (APPEND X (LIST (CAR Y)) 2Z))
(VALID1 L (APPEND X (CDDR Y) Z)) ) ) ) ) ) )

(DEFUN INTERSECT (A B) ;return T if lists A and B have at
;least one top-level element in common.
(COND ((NULL A) NIL)
((NULL B) NIL)
((MEMBER (CAR A) B) T)
(T (INTERSECT (CDR A) B)) ) )
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The following functions manipulate a formula or part of a formula. WFF checks
that it is syntactically correct, i.e., a well-formed formula. FORMAT calls WFF
| to verify the syntax and then transforms the formula into one that does not use
k the implication operator IMPLIES. ORWFF, ANDWFF, and NWFF determine
§  whether or not a formula is a disjunction, conjunction or negation, respectively.
E  OP returns T if its argument is a valid binary operator.

3 WFF is a predicate that is true if its argument is a well-formed formula of the
4 propositional calculus. That is, the argument is either a variable (the first clause
tests this, although it doesn’t make sure that the atom is not numeric or NIL), or
Lt is a compound well-formed formula that involves the unary operator NOT, or
it is compound with a binary operator, with a form (WFF1 OP1 WFF 2) where
WFF1 and WFF?2 are well-formed formulas and OP1 is one of the allowed binary
operators AND, OR, or IMPLIES.

(DEFUN WFF (X) ;return T if X is a well-formed formula
(COND ((ATOM X) T
((MATCH °’ (NOT (WFF DUM)) X) T)
((MATCH ’ ((WFF DUM) (OP DUM) (WFF DUM)) X) T)
(T NIL) ) )

(DEFUN ORWFF (X) (COND ((ATOM X) NIL) (T (EQ (CADR X) "0R))))
(DEFUN ANDWFF (X) (COND ((ATOM X) NIL) (T (EQ (CADR X) YAND))))
(DEFUN NWFF (X) (COND ((ATOM X) NIL) (T (EQ (CAR X) ’NOT))))

(DEFUN 0P (X) . test if X is a binary operation.
(MEMBER X ’(AND OR IMPLIES)) )

(DEFUN FORMAT (X) ;check syntax and eliminate IMPLIES.
(COND ((ATOM X) X)
((NULL (WFF X))
(PRINT ’ (SYNTAX ERROR))
(RETURN NIL))
((NWFF X) (LIST ’NOT (FORMAT (CADR )9DD))
((EQUAL (CADR X) ’IMPLIES)
(LIST (LIST ’NOT (FORMAT (CAR X)))
'0R
(FORMAT (CADDR X)) ) )
(T (LIST (FORMAT (CAR X))
(CADR X)
(FORMAT (CADDR X)) )) ) )

Here is another example problem. This example is used to illustrate the
PROVER. Let us assume the following: Either Jan buys a loaf of bread to-
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day or she eats yogurt for breakfast. Jan doesn’t eat yogurt and eggs at the
same meal. We wish to prove that if Jan eats eggs for breakfast today. then she
buys a loaf of bread. Our first task is to re-express our assumptions and de-
sired conclusion in the form of primitive statements and logical relations among
them. In order to keep our descriptions reasonably short, we use capital letters
to abbreviate the primitive statements. Here are the primitive statements.

A. Jan buys a loaf of bread today.
B. Jan eats yogurt for breakfast today.
C. Jan eats eggs for breakfast today.

Here are the premises:

(A OR B)
(NOT (B AND C))

and the desired conclusion is
(C IMPLIES A)

The problem of showing that Jan buys bread today can be given to the prover
in the following form:

(((A DR B) AND (NOT (B AND C))) IMPLIES (C IMPLIES A)).

When the program is invoked by typing (PROVER), the input S-expression
is read and assigned as the value of the atom S. In the PROVER function. the
input expression is compared with the atoms H and R to check for a help request
or a command to return to top-level LISP. In the case of our example, VALID1
is called with two arguments: NIL and the result of applying FORMAT to S.
FORMAT eliminates occurrences of the IMPLIES connective. The result of this
is

((NOT ((A OR B) AND (NOT (B AND C)))) OR ((NOT C) OR A))

VALID1 is called with L equal to NIL and R equal to the above expression.
The production which matches is the rule for OR on the right. This results in
a call at level 2 to VALID1 with R as before but the OR dropped (and a set
of parentheses dropped also). The next production which is applied is that for
NOT on the right, leading to a level-3 call with

L
R

(((A OR B) AND (NOT (B AND C)))
(C(NOT C) OR 4))

“OR on the right” is applied again, making (NOT C) and A separate formulas
in the list R. Then “NOT on the right” is again applied, resulting in a level-6
call to VALIDI1 with
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| L = ((A OR B) (NOT (B AND ©)) €)
R = (R)

E Next, “NOT on the left” is applied, making R = (A (B AND C)). A level-7 call
' with L= ((AORB) C) and R = (A (B AND C)) brings about an application
L of “OR on the left” which yields two recursive calls at level 8 to VALID1. The
b first of these occurs with L = (A C)and R = (A (B AND C)). The sequent
i represented by this pair of L and R is an axiom, since A occurs as a top-level
L element of each, and this is noticed by the first production, and it therefore
b causes a return with T. The second recursive call at level 8 proceeds with L =
: (BC)and R = (A (B AND C)). The rule for “AND on the right” fires, and
£ there are then two recursive calls at Jevel 9. The first of these, with L = (B C)
t and R = (A B) returns T, since the intersection of L and R is (B) and therefore
L nonempty. The second of these finds that lists (B C) and (A C) share an element
i, in common, and also returns T. From here on, the recursion unwinds, and the
f, value T works its way up to the top-level call of VALID1. Then, the expression
¢ (PRINT "VALID), in the function PROVER, is activated, and the atom VALID
i is printed, followed by a blank line. PROVER then loops back and prompts for
another formula from the user.
While somewhat more efficient than the method of perfect induction, Wang’s
E algorithm does not employ the kind of problem-solving strategy that humans
F seem to use. A system based upon a more strategic approach is described next.

- 6.2.4 The “Logic Theory Machine”

" One of the earliest investigations in artificial intelligence was a study of auto-
. matic deduction using problem-solving heuristics [Newell et al 1957]. The objec-
- tive of this study was to develop a program that could prove simple theorems
. from Principia Mathematica by Russell and Whitehead, using a human-like ap-
~ proach. The program achieved the objective and illustrates a different approach
to theorem proving. The program was an improvement over the “British Mu-
seum algorithm.” That brute-force algorithm attempted to prove a theorem by

- the following procedure:

e Start with the axioms and consider these to be one-step proofs of them-
selves.

e At the n'" step, generate all theorems derivable in n steps by applying
the “methods” to the theorems at the n — 1t" step, exhaustively.

o At each step, eliminate duplicates and check to see whether or not the
desired formula has been proved.

The methods consist of substitution, replacement, or detachment and are de-
scribed below.
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Needless to say, the British Museum algorithm leads to a combinatorial ex-
plosion: although there are only 5 one-step proofs (which correspond to the five
axioms listed below), there are 42 four-step proofs, 115 six-step proofs, and 246
eight-step proofs, etc.

The Logic Theory Machine (as the program by Newell et al was called), used
a more sensible approach. It attempted to do such things as to break the problem
to be solved into subproblems and solve each one in turn. It used the following
methods:

Substitution: From any known theorem one can get a new one by replacing
all occurrences of a particular variable by some arbitrary formula.

Detachment: If B is to be proved and A — B is a theorem or axiom, then it
suffices to prove A.

Chaining: If A — C is to be proved and A — B is a theorem or axiom, then
it suffices to prove B — C. This is called forward chaining. Alternatively,
if A— Cis to be proved and B — C is a theorem or axiom, then proving
A — B is enough. Naturally, this is called backward chaining.

The axioms from Principia Mathematica used by the Logic Theory Machine
are the following (for the propositional calculus):

Aziom Name
PvP-PpP “Taut”
Q—PVvQ “Add”
PvQ—-QvVvP “Perm”
PV(QVR)—>QV(PVR) “Assoc”
(Q—=R) > ((PvQ)— (PVR)) “Sum”

The following example illustrates how a proof is done with the system of
Principia Mathematica.

To Prove: (P —» -P) — -P

formula how derived
“PV-P —-P  Subst. (-P/P) in Taut.
(P — -P) — —P Def. of “-", QE.D.

As an exercise, the reader is encouraged to try to prove the following theorem.
P — —(=P)

The Logic Theory Machine began by putting the formula to be proved on
a list called the subproblem list. It went into its general loop, where it would
examine a problem on the subproblem list, and try to work with it using substi-
tution, detachment and chaining. The length of the subproblem list would grow
and occasionally shrink (when subproblems were actually solved), and a list of

A
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. theorems would grow. The program was successful in proving a large number of
the theorems listed in Principia Mathematica in a reasonable amount of time.
This study was important in demonstrating that strategy could be effectively
employed in proof finding.

Before we examine logical reasoning methods for the predicate calculus, it is
I helpful to sce the “resolution” method in the propositional calculus, where its
E - mechanics are relatively simple.

6.2.5 The Resolution Principle in the Propositional
Calculus

L Another method for proving theorems of the propositional calculus makes use of
the “resolution principle.” This method, unlike Wang’s algorithm, extends nicely
‘ to handle problems in the predicate calculus as well as the propositional calculus.
' It is very important for that reason. A very simple form of the resolution principle

PvQ,-PVvR—-QVR.

More generally, resolution allows us to take two “parent clauses” that share a
complementary pair of “literals” and obtain a new “resolvent clause.” In the

with or without a negation sign in front of it (e.g., P, ~Q, and —R are literals). A
clause is a formula which is a sum of literals, e.g., PV-QV-R. A complementary
pair of literals is a pair such that one literal is the negation of the other, e.g., P
d —=P. A general expression of the resolution principle for propositional logic

Ll\/LQV...\/Lk,]\Il\/A’”[g\/...\/]\fmHLQ\/...\/L)C\/A{Q\/...\/Mm

where M; = —L; {(i.e., the first literal of one clause complements the first of the
other clause).
If k =1 or m = 1, this rule still makes sense. If both £k =1 and m = 1,
.~ the resolvent is called the null clause and denotes a contradiction. (If this seems
L mysterious, it may help to note that F is the identity element for disjunction;
. LyvI,VI;=0L;VLyVLs;VF, and that if we remove all the L, we are left
¢ with F.) The null clause is denoted by the box symbol, “0”.

We now illustrate theorem proving by resolution with the example previously
introduced.

- Premises: P — Q.Q — R,-R
.. Clause form: -PV Q,-QV R,—R
Desired Conclusion: —~P

Traditionally, proof by resolution uses the reductio ad absurdum method,
whereby the conclusion is negated and added to the list of premises with the
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aim of deriving a contradiction. Therefore we have an additional clause (in some
cases several additional clauses) P for this example. We number our clauses (]
through C4.

Label Clause Where From
Cl: ~PV (@ premise
C2: ~Q VR premise

C3: -R premise

C4: P negation of conclusion
Ch: Q resolve C1 with C4
C6: R resolve C2 with C5
CT: O resolve C3 with C6

Since C7 is the null clause, we have derived a contradiction from the clauses
C1 through C4 and proved that the desired conclusion =P follows from the
original premises.

6.3 Predicate Calculus Resolution

6.3.1 Preliminary Remarks

As discussed in Chapter 4, one cannot describe the inner structure of propositions
using the propositional calculus. One can only manipulate whole statements and
not the objects and predicates which constitute them. On the other hand, the
predicate calculus does allow explicit expression of objects and predicates. It
also provides for manipulations of objects using functions, and for making general
statements using the universal quantifier, and also for existence statements using
the existential quantifier.

6.3.2 An Example

Now we consider an example problem to illustrate how the resolution principle
is applied in a predicate-calculus setting. This example deals with properties of
numbers, including primality and oddness.

Let us suppose that the following premises are given: Any prime other than
2 is odd. The square of an odd number is odd. The number 7 is a prime. The
number 7 is different from 2.

From these premises it is to be proved that the square of 7 is odd.

We can represent the premises and the conclusion in the predicate calculus:
we begin by choosing predicates and functions with which to build up formulas.
A reasonable set is the following group of three predicates and one function:

e P(z): z is prime.

e O(z): x is odd.

A
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Now we may express the premises in the predicate calculus as follows:

o Vz((P(x) A—E(z,2)) — O(z))

o Vz(O(z) — O(s(x)))

o P(7)

e —E(7,2)
The negation of the conclusion is represented by the formula: —O(s(7)).

Before we can apply the resolution principle, the premises and the negation
of the conclusion must be in clause form (the process of obtaining clause form

in the predicate calculus is explained in the next section). The clauses that we
get are these:

e Cl: -P(z)V E(z,2) vV O(z)

e C2: =0(z) Vv O(s(x))

o C3: P(7)

e C4: ~E(7,2)

o C5: —0(s(7))

We may now attempt to derive new clauses using the resolution principle. In
order to obtain matching literals, it is usually necessary to make substitutions
of terms for some of the variables in each clause. This substitution process is

~ explained in detail in Subsection 6.3.4. The proof that the square of 7 is odd is
shown here:

new clause how derived
Cé: E(7,.2)VO(7) C1,C3(x=T)
C7: O(7) C6, C4

C8: O(s(7)) C7,C2(z=17)
Co: O C8, C5

Now let us consider the steps required for predicate-calculus resolution in
more detail, beginning with the job of obtaining clause form.
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6.3.3 Putting a Formula into Clause Form

There are a number of details that must be attended to in order to put ap
arbitrary formula of the predicate calculus into clause form. We shall explaip
the sequence of steps required, considering them one at a time, on an example
expression.

As in the propositional calculus, a clause consists of zero or more literals,
connected by “v”. Transforming a formula into clause form requires elimination
of quantifiers (according to strict rules) as well as getting it into conjunctive
normal form. The elimination of quantifiers must usually be performed first.
since so doing often introduces negation signs that apply to the entire scopes of
eliminated quantifiers.

Let us consider the formula

(V2){P(z) — Gy){Q(z. y)}} A (V){~P(z) - ~By){Q(z,y)}}.

One interpretation of the predicates in this formula is: P(z) iff z is composite
(i.e., z is divisible by some number other than 1 or itself); Q(x,y) iff  is not
equal to y, and y divides z with no remainder.

Our first order of business in converting this to clause form is to eliminate
the implication connectives (“—"), using the rule (P — Q) iff (=P v Q). This
gives us

(Vo) {=P(z) v By{Qz,y)}} A (o) {~~P(z) v ~(3y){Q(x, y)}}.

Next we reduce the scope of each negation sign. Two rules that help here are
DeMorgan’s laws:

(P AQ)TI-PV —Q
-(PVQ)ff—-P A -Q

However, these are not applicable in the example here. Two rules regarding
negations that precede quantifiers are the following:

-(Vz)P(x)iff (3x)-P(x)
=(dz) P(x)iff (Vz)-P(z)

Of course we reduce ~—P to P whenever we get the chance. Now we transform
the negated existential quantification to get the new formula:

(Vz){=P(z) v (GyH{Q(z.v)}} A (va){P(z) v (¥y){-Q(r,y)}}

Next we standardize the variables of the formula, giving each quantifier a
variable with a different name. This renaming cannot change the meaning of the
formula since each variable acts as a “dummy” for its corresponding quantifier
anyway. Our formula is now:

(Vz){~P(x) v Gy Q(z,y)}} A (V2){P(2) v (Vi) {-Q(z, w)}}
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Next we eliminate the existential quantifiers using a technique known as
Gkolemization'. This works as follows. Suppose we have (Vz)(Iy){ P(z,y)}.
This states that for each value of z we can find a y such that P of z and y.
‘That is to say that one can imagine a function f(r) which returns a value y that
makes P(z,y) true. If we allow ourselves the liberty of writing (Vz){P(z, f(z))},
then we obtain an expression logically equivalent to the former; however, the
new formula uses a function symbol rather than a quantifier. Of course, if the
existential quantifier had not been in the scope of the universal quantifier, there
; would be no functional dependency, and a constant symbol such as a could
be used to replace the existentially quantified variable. That is, (3z){P(z)} is
Skolemized to P(a). Applying Skolemization, our example formula becomes:

(Vo){=P(z) v Q(z, f(2)} A (V2){P(2) v (Vw){-Q(z, w)}}

The functions introduced by Skolemization are called Skolem functions, and
the constants are called Skolem constants. If several functions or several con-
stants are introduced into a formula by Skolemization, they must each be given
distinct symbols (e.g., f1, f2, etc., and a,b, ¢, etc.).

We now adopt the convention that all variables in the formula are universally
quantified, so that the universal quantifiers themselves can be removed. The
result for our example is:

{=P(z) v Q(z. f(z})} AM{P(2) V ~Q(z,w)}.

Normally, at this stage, we would have to put the formula into conjunc-
tive normal form. Coincidentally, our example is already in this form. In gen-
eral, however, some changes to the formula are necessary. The distributive laws
are generally helpful at this stage, and can be expressed in their propositional-
calculus form as follows:

PV(QAR) = (PVQ)A(PVR)
PA(QVR) = (PANQ)V(PAR)

The final step is breaking up the formula into separate clauses. To do this
. we simply remove the conjunctions and list each conjunct as a separate clause.
. For our example. this results in the two clauses:

—P(r) vV Q(x. f(x))

P(z)V-Q(z,w)

1hamed after the mathematician Thoralf A. Skolem.
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6.3.4 Unification

In applying the resolution principle to clauses of the predicate calculus, detection
of complementary pairs of literals is more complicated than in the Propositiona
calculus, because the predicates take arguments, and the arguments in one lit-
eral are required to be compatible (“unifiable”) with those in the corresponding
literal. For example, the pair of clauses

P(f(a),z) v Q(z)
~P(g(a), z) v R(x)

cannot be resolved because the first argument of P in the first clause is incom.-
patible with that of P in the second clause; f(a) and g(a) don’t match and can't
be made to match using any substitution of terms for variables. On the other
hand, the pair of clauses

P(f(a),z) Vv Q(x)
~P(y,9(b)) v R(g(b))

can be resolved. First, an operation called “unification” is performed: a new
version of the first clause is obtained by substituting g(b) for z; also, a new
version of the second is obtained by substituting f(a) for y. The two resulting
clauses, now unified, have a complementary pair of literals and resolve to yield

Q(g(b)) v R(g(b)).

| 6.3.5 A Unification Algorithm

In order to test a pair of clauses for resolvability, we apply the operation known as
unification, described in the preceding paragraphs. This testing process works
by matching one literal to another and performing substitutions of terms for
variables along the way. If at any point the process fails, the pair of literals
is not unifiable. On the other hand, it is often the case that there exists a
multitude of different substitutions that can unify a pair of literals. Some of these
substitutions can have further substitutions performed on them to yield some of
the others, and some substitutions are more useful than others for purposes of
deriving the null clause in a proof by resolution.

Let us assume that we have a whole set of literals to be unified (not just two):
{L;} where i = 1,... k. We seek a substitution

® = {(t1,v1), (t2,v2), ..., (tn,vs)}

such that L;® = Ly® = --- = L;®. In this notation L;® is used to indicate
the result of making all the replacements of terms t; for variables v; specified
in ® in all the variables’ occurrences in L;. As an example, we may take L =

P(z,y, f(y).b) and & = {(a,2),(f(2),y)}. Then L& = P(a, f(z), f(f(2)).b). In
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addition, if S is a set, then S® denotes the set of literals formed by applying ®
to each member of S.

Let ® be a substitution. Then & is a most general unifier of S =
{L1, L2, - ., Lt} provided that for any other unifier ® of S, there is some ®”
guch that S®' = S®®”. That is, the effect of any unifier ¢’ can be achieved by
applying the most general unifier, ®, followed by some additional substitution. A
most general unifier leaves as many variables in the resulting literals as possible,
®  put without introducing any unnecessary function symbols.

In order to find a most genéral unifier we proceed as follows. Let & «— {}.
We regard each L; as a string of symbols and move left-to-right examining the
corresponding symbols until a “disagreement” is found. The terms in this po-
gition form a disagreement set. If none of the terms in the disagreement set
consists of a variable by itself, we give up because the set of literals cannot be
unified by any substitution. Otherwise, we “convert the variables into terms”
by adding pairs to the substitution of the form (t,,v,) where v, is one of the
variables and t,, is one of the terms. In order to add a pair (¢,,v,) to a substitu-
tion ® = {(t1,v1), (t2,v2), ..., (tk,vx)} it must be the case that v, is not equal
to any of vy,i = 1,...,k; we first apply the substitution {(¢,,v,)} to each of
the ¢;,7 = 1,...,k, and then we insert it into the resulting set. We continue to
add such substitutions and simultaneously perform them on the literals until ei-
ther the disagreement set is no longer a disagreement set, or no variables remain
(in this case, we also give up). Once the disagreement has been taken care of,
symbol examination is resumed (including the examination of symbols recently
inserted by substitution). When and if the matching reaches the right end of all
‘the literals, a unifier has been found (®). This unifier also happens to be a most
general unifier. It can readily be seen that ® actually is a unifier for the set of
Mliterals. In addition, we note that the algorithm for finding the unifier can be
made to require time only proportional to the combined lengths of the literals
in the input set.

Here is an example in which a unifier is found for a pair of literals. The two

literals are:
.

L,= A(Iv f(y))
Ly = A(a, f(g(2)))

As the scan proceeds from left to right, the set ® of substitutions gets larger
f each time a disagreement set is found and put into agreement.

¢ —{}
¢ — {(a,2)}
® — {(a,7),(g(2),9)}

. This last substitution is a most general unifier for {L;, Ly}. Another unifier
B for this set is

¢' = {(a,z),(g(b),y), (b, 2)}.
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However, this is not a most general unifier. It is possible to get & from & by
making the additional replacement of b for z, but one cannot get ® from ¢/
because variables may not be substituted for terms (the constant b is a term).

As previously mentioned, any given pair of clauses may yield zero, one. two
or many more resolvents. These can be found by finding complementary pairg
of literals and determining any existing most general unifiers for them and then
applying resolution.

6.3.6 A Unifier in LISP

Let us now examine a LISP program that implements one variation of the algo-
rithm given above. The variation works with only a pair of literals rather than
an arbitrarily large set.

The program we give is reasonably efficient, although it could be made more
so (at a cost of reduced readability). It may attempt to perform substitutions
that have already been made; the removal of this redundancy is left as an exercise
for the reader.

The top-level function, UNIFY, initializes (to the empty list) a variable U
which is used to store the unifier (if any) as it is constructed. This function also
tests the predicate symbols for equality, and if successful, calls UNIFY1 to unify
the lists of arguments. Note that UNIFY and UNIFY1 may return either a list
of substitutions, which is possibly null, or the atom NOT_UNIFIABLE. If NIL
is returned, it means that the (sub)expressions are unified with no substitutions.

The program uses a straightforward representation for literals. The following

two statements set up test data corresponding to the literals P(z, f(a)) and
P(b,y):

(SETQ L1 ’(P X (F A)))
(SETQ L2 °(P B Y))

The program assumes that any negation signs have already been stripped off the
literals, and it therefore does not check for complementarity.
Further description of the functions is given in the comments.

; UNIFY.LSP
; A program that demonstrates unification of
; literals in the predicate calculus.

; The top-level procedure is UNIFY.
; It finds a most general unifier for 2 literals.
(DEFUN UNIFY (L1 L2)
(PROG (U)
(SETQ U NIL) ; unifier is initially null.
(RETURN
(COND ; make sure predicate symbols match:
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((NULL (EQ (CAR L1) (CAR L2))) "NOT_UNIFIABLE)
; if all arguments can be unified,
; return the list of substitutions:
((NULL (EQ (UNIFY1 (CDR L1) (CDR L2))
'NOT_UNIFIABLE))

u)
(T ’NOT_UNIFIABLE) ) ) ) )

L . Recursive function UNIFY1 unifies lists of terms.

b (DEFUN UNIFY1 (EXP1 EXP2)

. (COND ; if atomic and equal, no substitution necessary:
((EQ EXP1 EXP2) NIL)
; check for list length mismatch (a syntax error):
((OR (NULL EXP1) (NULL EXP2)) ’NOT_UNIFIABLE)
; if EXP1 is a variable, try to add a substitution:
((VARIABLEP EXP1) (ADD_PAIR EXP2 EXP1))
; handle the case when EXP2 is a variable similarly:
((VARIABLEP EXP2) (ADD_PAIR EXP1 EXP2))
; now, if either expression is atomic, it is a
; constant and there’s no match since they’re not EQ:
((OR (ATOM EXP1) (ATOM EXP2)) ’NOT_UNIFIABLE)
; the expressions must be non-atomic; do recursively.
; apply current substitutions before unifying the CARs.
((NULL (EQ (UNIFY1 (DO_SUBST (CAR EXP1) U)

(DO_SUBST (CAR EXP2) U) )
’NOT_UNIFIABLE))

(UNIFY1 (CDR EXP1) (CDR EXP2)) )
; if the CARs are not unifiable, return NOT_UNIFIABLE:
(T ’NOT_UNIFIABLE) ) )

; The function ADD_PAIR attempts to add a (term-variable)
; pair to the the substitution list. If the variable occurs
; in the term, then it returns NOT_UNIFIABLE. Otherwise it
; substitutes the term for any occurrences of the variable
; in terms already in U, and puts the new pair on the front
; of the list.
(DEFUN ADD_PAIR (TERM VAR)
. (COND ((DCCURS_IN VAR TERM) ’NOT_UNIFIABLE)
(T (SETQ U (CONS (LIST TERM VAR)
(SUBST U TERM VAR) ))) ) )

; Do all substitutions in L on EXP in reverse oruer:
: (DEFUN DO_SUBST (EXP L)
~ (COND ((NULL L) EXP)
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(T (SUBST (DD_SUBST EXP (CDR L))
(CAAR L)
(CADAR L) )) ) )

; Substitute X for each occurrence of Y in L:
(DEFUN SUBST (L X Y)
(COND ((EQ L Y) X)
((ATOM L) L)
(T (CONS (SUBST (CAR L) X Y)
(SUBST (CDR L) X Y) )) ) )

; Test EXP to see if it is a variable:
(DEFUN VARIABLEP (EXP)
(MEMBER EXP (X Y Z W)) )

; Test to see if ELT occurs in EXP at any level.
; ELT is assumed to be atomic:
(DEFUN OCCURS_IN (ELT EXP)
(COND ((EQ ELT EXP) T)
((ATOM EXP) NIL)
(T (OR (OCCURS_IN ELT (CAR EXP))
(OCCURS_IN ELT (CDR EXP)) )) ) )

The following statements provide some tests for the program:

(TRACE UNIFY UNIFY1 DO_SUBST)
(UNIFY L1 L2)

(SETQ L3 ’(P (F X) (G 4 X)))
(SETQ L4 *(P (F (H B)) (G X Y)))
(UNIFY L3 L4)

(SETQ L5 *(P X))
(SETQ L6 *(P (F X)))
(UNIFY LS L6)

(SETQ L7 (P X (F Y) X))
(SETQ L8 (P Z (F Z) A))
(SETQ U (UNIFY L7 L8))
(DO_SUBST L7 U)
(DO_SUBST L8 U)

The example with L5 and L6, above, demonstrates that the program correctly
performs the “occurs check” and reports that L5 and L6 are not unifiable. The

A
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laSt example demonstrates that substitutions are performed correctly. If the
?substitution list were reversed, the results of making the substitutions in U on
§ 1.7 and L8 would no longer match.

.6.3.7 Factors and Resolvents

It sometimes happens that two or more literals within the same clause may
- pe unified. For example, the clause C = P(z) v Q(z) vV Q(f(a)) contains two
- literals which can be unified with the substitution ® = {(f(a),z)}. The result of
pplying this unifying substitution to the clause and removing the redundancy
the literals is called a factor of the original clause. In this example, the factor
C® or P(f(a)) v Q(f(a)).

Suppose that we have two parent clauses C; and Cj, with no variables in
mmon, such that L, is a literal of C; and L, is a literal of Cs, and such that
1 and ~L2 have a most general unifier ®. Then the following clause is a binary
solvent of C'y and Cs:

(C1® — Ly @)V (Co® — Ly®)

here C — L denotes the clause obtained from C' by removing literal L.

We define a resolvent of parent clauses C; and Cs to be a binary resolvent
& either of Cy and 5, of C1 and a factor of Cy, of C and a factor of C, or of a
E factor of C; and a factor of Cy. For example, if C = P(z, f(a)) VQ(z)VQ(f(y))
and Cy = ~Q(f(b)) V R(z), then C3 = P(f(y), f(a)) V Q(f(y)) is a factor of Cy
and Cy = P(f(b), f(a)) vV R(z) is a binary resolvent of C3 and C,. Thus Cy is a
esolvent of C'y and Cs.

The definition of resolvent just given is known as the “resolution principle,”
r simply “resolution.” It is an inference rule that can yield new clauses from
an initial set of clauses. Resolution is sufficiently powerful that no other rule is
eeded in order to assure that all logically implied clauses can be obtained. This
ay be stated another way: the resolution principle is logically complete; if a set
f clauses is inconsistent (logically implies a contradiction) then the resolution
rinciple is sufficient to demonstrate the inconsistency. As we shall see later, a
Testricted form of resolution is the basis of the PROLOG language.

We may now define the term “deduction.” Let S be a set of clauses. A
eduction of a clause C from S is a finite sequence C1, Cs, ..., Cy, where each C;
- 1s either a member of S or a resolvent of two clauses preceding it in the sequence,
1 and Ck =C.

; In the next section we prove that the resolution principle is logically complete.
b In order to do so, we first prove a result known as Herbrand’s theorem.

5 6.4 The Logical Completeness of Resolution.

E In this section, we justify the claim behind the power of the resolution principle:
| that the resolution principle is logically complete. The fact that resolution is
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complete, in turn, makes it possible to build automated reasoning systems that
require only one inference rule (resolution), yet provide as much power as any
other predicate-calculus inference system.

6.4.1 Semantic Trees

In order to provide something of a foundation on which to base our discussion
of the resolution method, we will begin with the notion of a “semantic tree.*
Then we will introduce some tools for establishing logical validity of a formula,
and finally show how resolution provides a reliable method for finding logical
inconsistency when such inconsistency is present.

Before we discuss semantic trees for predicate-calculus formulas, we present
the propositional-calculus version. Consider the propositional calculus expres-
sion PV Q. A semantic tree for this consists of a balanced binary tree, each level
of which is associated with some variable, here either P or Q. This is illustrated
in Fig. 6.3. Each path from the root to the bottom of the tree corresponds to an
assignment of truth values to proposition symbols (such an assignment is called
an “interpretation” for the symbols). At the leaves of the tree, the truth values
for the given expression appear.

T T T F

Figure 6.3: A semantic tree for PV Q.

There is a similarity between semantic trees and truth tables. They generally
carry the same information. However, as we shall see, there is an advantage in
using the idea of semantic trees when we explain how resolution works.

6.4.2 The Herbrand Universe and Herbrand Base

Let us now turn to the predicate calculus. In order to construct semantic trees
for expressions of the predicate calculus, we must be able to assign truth values
to the component parts. When variables are involved, one cannot easily do this.
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as the truth of a predicate usually depends upon the particular values of its
t arguments, and variables are simply not particular enough.

Suppose our predicate calculus expression is P(z) vV Q(y). If it is understood
| that r and y refer to positive integers, a semantic tree for this expression would
B require two levels for every positive integer (an infinite tree). The beginning of

L this tree might look like Fig. 6.4.

Figure 6.4: Top of semantic tree for P(z) VvV Q(y).

In this example, the positive integers are playing the role of the universe of
objects. If the universe were something finite, the job of constructing a complete
semantic tree might be possible. On the other hand, it still might be made
difficult by the fact that one must consider the results of applying functions to
objects as though they were new objects.

Logical consistency of a set of formulas should not depend in any way upon

the particular universe of objects one may wish to consider. As a result of this
* observation, we are free to choose a universe to suit our purpose. Such a universe
- should be as simple as possible, except that it should contain enough objects in
. it to ensure that we can establish logical inconsistency by looking at a semantic
; tree based on that universe.
We say that a formula is a sentence iff all its variables are quantified. Then,
- the “Herbrand universe” for a particular sentence W is precisely the suitable
i universe we need. It is defined as follows: Let G be the set of constants appearing
- in U. If G is empty, then let G be {a}. Here “a” is an arbitrary symbol. Let
Fy be the set of unary functions appearing in ¥, and in general let F; be the set
of i-ary functions in ¥. The Herbrand universe is defined to be the closure of G
with respect to all the functions in all the F}’s. 4

If there is at least one function of arity 1 or more (that is, taking k arguments
for some k > 1), then the Herbrand universe is necessarily infinite. For example,



210 CHAPTER 6. LOGICAL REASONING l

the Herbrand universe for the sentence (Vx)(Vy)P(f(x),y) is
{a. f(a), f((a)),...}.

If there are no functions, although there may be constants, then the Herbrangd
universe is finite.

The Herbrand base for a sentence ¥ is the set of all variable-free atomic for.
mulas that one can construct by substituting elements of the Herbrand universe
for variables in the propositions of ¥. For the sentence (Vz)(Vy)P(f(x).y) we
have the following Herbrand base:

{P(f(a),a), P(f(f(a)),a), P(f(a), f(a)), P(f(f(a)), f(a)),...}.

As a second example, consider the formula, (3y)(Vz)(P(z) — Q(z,y)) The Her-
brand universe now is finite: {a}, and the Herbrand base is also finite:

{P(a), Q(a,a)}.

6.4.3 Herbrand’s Theorem

An interpretation is defined to be a mapping which assigns either the value
T or the value F to each element of the Herbrand base. If n is the number
of elements in the Herbrand base, then there are 2" possible interpretations.
When the Herbrand base is infinite, the number of possible interpretations is
vastly more infinite (uncountably infinite). In this case, there is no possibility
of enumerating each interpretation and attempting to verify the validity of a
sentence by perfect induction.

A model for a sentence or set of sentences is an interpretation which makes
the sentence (or all the sentences in the set) true. For a sentence to be logically
valid, every interpretation for the sentence must be a model. If no models exist
for a sentence, then it is a contradiction, and it is unsatisfiable.

Resolution makes use of an essential result known as Herbrand’s theorem.
This theorem is stated as follows:

Herbrand’s Theorem: Let ¥ be a formula in conjunctive normal form. Then
V¥ is a unsatisfiable if and only if there exists an inconsistent finite set of variable-
free instances of clauses of ¥.

Proof: We first prove the forward implication. Suppose that ¥ is unsatisfiable.
Let T be a semantic tree for ¥ based upon the Herbrand universe for ¥. Then
each path from the root in T must eventually reach a node at which one of the
members of ¥ is falsified; otherwise, there would exist an interpretation of ¥ and
¥ would be satisfiable. Let U’ be the set of variable-free instances of members
of ¥ that are falsified at these nodes. The number of these instances is finite.
since none of them is infinitely far down the tree. The members of ¥’ form an
inconsistent set since each interpretation of ¥’ falsifies at least one of them.

To prove the reverse implication, let us suppose that ¥’ is a finite, inconsistent
set of variable-free instances of members of ¥. Then every interpretation of ¥’
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| falsifies a member of ¥’. Any interpretation that falsifies a member C of ¥’ also
alsifies the member of ¥ of which C is an instance. But every interpretation of
¥ is an interpretation of ¥’. and hence every interpretation of ¥ fails to satisfy
b ¢’ and also fails to satisfy ¥. Thus ¥ is unsatisfiable. Q. E. D.

In order to illustrate the meaning of Herbrand’s theorem, we present an
E oxample of a formula, its expression in conjunctive normal form, and a finite
L collection of variable-free instances of its clauses that are mutually inconsistent.
E The formula is: (Vo) [(P(z)VQ(f (z)))A(=P(x) A=Q(x))]. In conjunctive normal
£ form, its clauses are the members of the set S:

S = {P(z) vV Q(f(z)), ~P(z), ~Q(x)}.
: The following set of variable-free instances of these clauses is inconsistent:
{P(a) v Q(f(a)),~P(a),~Q(f(a))}.

Notice that the substitutions made to produce such an inconsistent set do
not necessarily have to be the same. In the first two clauses, z was replaced by
a, whereas in the third, f(a) was used.

6.4.4 The Completeness of Resolution

Before we state and prove the completeness theorem for resolution, it is helpful
| to consider an example that shows the relationship between the resolution prin-
¢ ciple and Herbrand’s theorem. In the example, the progress of the deduction
procedure may be observed by visualizing particular subtrees of semantic trees
- called “failure trees.”

Let us continue with the preceding set of clauses to build a semantic tree.
This particular semantic tree is infinite since the Herbrand base is infinite (there
is a function symbol f present in the original sentence).

To show that the original formula is unsatisfiable we must show that no
interpretation of the Herbrand base is a model for S. This is equivalent to
showing that each path from the root in the semantic tree runs into a node
¢ where some ground instance of some member of S is falsified by the partial
| interpretation defined by the path to that node. If S is unsatisfiable then each
§ path from the root must eventually reach such a node; otherwise, an infinite path
£ could be found that would correspond to an interpretation that satisfied S, and
thus S would be satisfiable. The first node found along each path causing at least
one clause of S to be false is called a failure node. Failure nodes are illustrated
with circles around them in Fig. 6.5. The subtree (of the semantic tree) whose
. leaves are all failure nodes is called a failure tree for S. Assuming that S is
unsatisfiable, there is a failure tree for each semantic tree for S; however, we
need only find one failure tree to establish that S is unsatisfiable.

At least one of the interior nodes of a failure tree has leaves for its two
children: that is, it is a parent of two failure nodes. Such a node is called
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P(a)

Qa)

P(f(a)) T

Qfa)) T

Figure 6.5: Top of a semantic tree for {P(z)V Q(f(x)), ~P(z), ~Q(z)}, showing
failure nodes and inference nodes.

an inference node. The preceding diagram shows inference nodes with squares
around them. The children n; and ny of an inference node represent points at
which two partial interpretations, each consistent with S up to the inference
node, both suddenly make ground instances of one or more members of S false.
Let C; be the clause (or one of them, if several exist) made false at ny, and
let C2 be the (or a) clause made false at ny. For example, the inference node
in the figure has two children, the left of which falsifies ~Q(f(a)), which is a
ground instance of =Q(), and the right of which falsifies P(a)V Q(f (a)), which
is a ground instance of P(z) Vv Q(f(z)). Clauses C; and Cy must always contain
literals that can be unified to form a complementary pair. That is, there must
be a literal in C; that can be unified with a literal in Cs, such that one literal is
a negated proposition while the other is unnegated. Note that before attempting
unification we should rename the variables in one of the clauses, if necessary, so
that all the variables in that clause are distinct from those in the other clause:
this process is called standardizing the variables apart. (Here -Q(x) becomes
complementary to Q(f(z)) after the z’s have been standardized apart and the
literals are unified.)

If resolution were performed on C; and C, to eliminate the complementary
literals, a new clause C’ would be obtained. Note that the partial interpretation
defined by the path from the root to the inference node fails to satisfy ', In
our example C' = P(f(z)). The failure to satisfy C’' occurs because at failure
node ny, all the literals of C; are falsified, and at n» all the literals of Cy are
falsified. At the inference node, all the literals except the complementary pair
(and possibly some other literals that can be unified with the complementary



f6.5. RESOLUTION STRATEGIES 213

¥ ones) have been falsified, but ¢’ is nothing but a disjunction of substitution
| instances of these falsified literals!

The inference node in the failure tree for S is therefore a failure node in a
failure tree for SU{C"'}. This new failure tree is slightly smaller than the one for
S; it has one less failure node and one less interior node. Since there must be at
Jeast one inference node in the new tree (unless the tree is a trivial one—having
only a single failure node—the root), we can repeat the process. Eventually we
must end with a set of clauses that includes the null clause; the failure tree for
such a set is the trivial tree, whose root is a failure node and which contains no
other nodes. At that point it becomes obvious that we do indeed have a failure

tree.
2 Resolution works by building up the set of clauses until the set has a trivial
| failure tree. Of course, if the original set of clauses is satisfiable, no failure tree
can ever be found for it; successive resolution steps will lead nowhere.
Let us now state and prove the completeness theorem for the resolution prin-
- ciple.
Resolution Completeness Theorem: A set S of clauses is unsatisfiable if
and only if there exists a deduction of the null clause from S.
Proof: Let us prove the reverse implication first. Suppose that there exists a
deduction C;,Csy,...,Ci of the null clause from S. If S were satisfiable then
there would exist some interpretation that not only satisfies S but all resolvents
derived from clauses in S. Since the null clause is one of these resolvents, and
no interpretation can satisfy the null clause, there can be no interpretation that
satisfies S.

To show that unsatisfiability implies the existence of a deduction of the null
clause, let us assume that S is unsatisfiable. From the proof of Herbrand’s
theorem, there must be a failure tree T for S. If T has only one node, then §
contains the null clause, since it is the only clause that can be falsified without
assigning truth values to any atomic formulas. For the case when T has more
than one node, there must be at least one inference node. As discussed above,
there is a resolvent C’ of the two clauses falsified at the two failure nodes below
this inference node, such that C’ is falsified at the inference node. The tree T”
obtained by deleting these two failure nodes from T is a failure tree for SU{C"},
and has two fewer nodes than T does. By induction on the size of the failure tree,
it can be seen that any failure tree can be reduced to the one-node failure tree
by a sequence of such resolution steps. The sequence consisting of the members
of S followed by the sequence of resolvents produced by this process constitutes
a deduction of the null clause. Q. E. D.

6.5 Resolution Strategies

In any realistic theorem-proving situation, we find that a large number of pos-
sible resolvents can be obtained even from a relatively small number of original




Ill/:l CHAPTER 6. LOGICAL REASONING

Fla uses. However, the vast majority of such resolvents are useless in deriving
Fontradiction. Some of the clauses may be tautologies. For example, the twq
lauses P(z) vV Q(z) and —P(z) V -Q(z) yield the two resolvents P(z) v -P(r)
and Q(z) V ~Q(z); these are generally worthless in a deduction using resolution,
gmd they should be eliminated.

Many of the clauses may be redundant; there may be exact duplicates of
Llamises, duplicates under reordering of literals, and there may be redundancy iy
fhe form of clauses being “subsumed” by other clauses. A clause C is subsumed
by a clause Cy if there is a substitution @ such that the literals of Cy® are g
qubset of those in C;. For example, P(a)V Q(y) is subsumed by P(x) since
fhe substitution of a for z makes the latter one of the literals of the former. It
g‘akes sense to delete any clause that is subsumed by another, since it cannot

1}

ay any useful role in deducing the null clause that cannot be played by the
horter clause more efficiently.
Ewven if all tautologies and redundant clauses are removed, including those
gubsumed by others, there are still combinatorially imposing choices to be made
. the selection of resolvents. The problem is in determining which ones to use.
. number of strategies have been devised to guide the search for the null clause
1 an ocean of possible resolvents. Three of these are known as “set of support.”
linear format,” and “unit preference.”

o b et

6.5.1 Set of Support

[

is usually fair to assume that the negation of the original conclusion will play

key role in making a contradiction, if one exists. Therefore it seems reasonable
D give priority to examining resolvents derived from the clauses that express the
nfegation of the conclusion. The set of support consists of all those clauses which
elther are part of the negation of the conclusion, or are resolvents with a parent
B the set of support (a recursive definition).

o o

e

§.5.2 Linear Format

B order to avoid the aimless behavior that seems to result without some imposed
frection, one can insist that each resolution step build on the results of the last.
Lther than do something completely unrelated to the last. A simple way to
rce this is to only consider, at any given moment. making resolvents that
se the most recent resolvent as one of their parents. It has been proved (see
b niderson and Bledsoe 1970]) that there always exists a proof of this form for any
rovable theorem in the predicate calculus. Of course, this does not guarantee
hat following any particular chain of resolvents generated in this way will lead
the right direction! It is still very difficult to know how to build the chain to
hd a proof.

o, =

DR T e D
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] 6.5.3 Unit Preference

The goal in resolution theorem proving is to derive O, the null clause. This clause
is one containing zero literals. It seems natural, therefore, that one should strive
to derive new clauses containing fewer and fewer literals, until one with zero
literals suddenly pops out. If we take two random clauses (random except for
the assumption that they can be resolved), one might contain 4 literals and the
other, 7. How many literals will be in one of their resolvents? Usually there
will be 9 in such a case. That is, out of n literals of one parent and m of the
~other, n + m — 2 literals will make up the resolvent in the majority of cases.
_ Clearly, for most values of n and m, this new resolvent will be longer than either
. of its parents. A case in which the number of literals in a resolvent can actually
" be lower than the number in one of its parents is when one parent consists of
a single literal?2. A clause consisting of just one literal is a unit clause. The
unit preference strategy consists of always preferring to resolve with unit clauses
" when doing so will lead to something new.

6.6 Solving Problems With Resolution

We have seen how resolution in the predicate calculus is used to prove that
a given conclusion follows logically from a set of premises. The same kind of
deductive procedure can also be used to find solutions to many problems that
can be expressed in logic. Here is an example of such a problem.

Sally is studying with Morton. Morton is in the student union
information office. If any person is studying with another person
who is at a particular place, the first person is also at that place. If
someone is at a particular place, then he or she can be reached on
the telephone at the number for that place.

What is the number where Sally can be reached?

Let us express the information about the situation in the predicate calculus. We
- use the following three predicates and one function:

o SW(x,y): z is studying with y.

o A(x,y): z is at place y.

21t is sometimes possible to reduce the number of literals by more than one in a single
- resolution step. For example, the first two literals of C1 below are complementary to Co
under the substitution {(a,y), (b, )}, and both are absent in the resolvent:

C1 = Pla,z)V P(y,b)VQ(z)
Cy = -P(a,b)
¢ = Qb

However, this situation is relatively uncommon.




e R(z,y): z can be reached (by telephone) at number y.
@ ph(z): the telephone number for place z.

[I'he logic formulations are as follows:

e SW(Sally, Morton)

» A(Morton, UnionBldg)

® YrVy(SW(z,y)AA(y, 2) —A(z, z))

e VzV¥y(A(z,y) —R(z,ph(y)))

[N order to determine the sequence of substitutions that will provide an answer
© the problem, we represent the question as a statement that the solution exists.
"hen we negate it and use resolution to derive the null clause. The negation of
he existence statement is:

e —JdzR(Sally, z)

n clause form, we have:

P : SW(Sally, Morton)

P> A(Morton, UnionBldg)

Py = SW(z,y) VvV -A(y, 2)VA(z, 2)
Py -A(u,v)VR(u,ph(v))

Ps: —-R(Sally,w)

T'he resolution steps that produce the null clause are as follows:

Label Clause Where From

Ch: —-A(Sally, v) Py, Ps {(Sally, u), (ph(v), w)}

Co: ~SW(Sally,y) v -A(y,v) P, €y {(Sally,z), (v,2)}

Cj: ~SW(Sally, Morton) Py, Cy {(Morton. y). (UnionBldg, )}
C4Z & Pl. Cg

Vow that the null clause has been derived, we know a sequence of resolution
teps that can be reapplied to a slightly different set of clauses to give us a
plution. The sole modification we make to the original set of clauses is to
hange the negation of the existence statement into a tautology by OR'ing it
rith the unnegated statement. Thus Premise 5 is now:

< o o g

—~R(Sally,w)VR(Sally, w)

216 CHAPTER 6. LOGICAL REASONING l
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Now we apply the same sequence of resolution steps as before. Each resolvent
derived from Premise 5 (all of them, in our case) will contain one more literal than
pefore. All of the extra literals are substitution instances of R(Sally, w). The
" fnal resolvent, instead of being the null clause, will contain a single resolvent,
“ R(Sally, ph(UnionBldg)). This literal says that “Sally can be reached by phone
¢ 4t the phone number for the student union building information center,” and
thus represents the solution to the problem.

t 6.7 Logic Programming and PROLOG

' 6.7.1 Introduction

A theorem-proving program takes as input a set of axioms and some formula to
_be proved. The output generally consists of information about whether a proof
was found, and if so, what unifications were used to derive it. If we consider
he input axioms to be a kind of program, and the theorem prover a kind of
interpreter, then we can “program in logic.” By suitably adding some extra
anguage features to help the interpreter prove the theorem and to print out
various things along the way, we may attain a programming language that is
heoretically as general as any other. Such a language is PROLOG.

6.7.2 Horn Clauses

Logic programming is commonly done using predicate calculus expressions called
. “Horn clauses” (named after Alfred Horn, who first studied them). Horn clauses
. are clauses that satisfy a particular restriction: at most one of the literals in
the clause is unnegated. Thus, the following are Horn clauses (assuming that
P,Q,P,, P, ..., P, represent propositions each consisting of a predicate and the
required number of terms):

-PvQ
SPLVaP V... VP V@
“PiV-aPyV...V-P
P
“ These can be rewritten:
P—-qQ

PAPAN...ANP,—(Q
PAAP,AN.. NP, — F
p

¥ The third of these expressions employs F to indicate falseness or the null clause.
k These are often written in a “goal-oriented” format in which the implied literal
i (the goal) is on the left:
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Q—P
Q—P.,P,.. P
— P, P, ... P
P

The third and fourth examples above show cases in which the goal arrow has
nothing to its left (in the former case) and nothing to its right (in the latter
case). The null clause is a Horn clause, and can be written:

—

Horn clauses in the goal-oriented format are used to program in PROLOG.

6.7.3 A Simple Logic Program

An example of problem solving using resolution on Horn clauses is offered below.
The premises, stated in English, are: (1) X is a grandson of Y if for some Z ,
X is ason of Z and Y is a parent of Z; (2) Walter is a son of Martha; and
(3) Jonathan is a parent of Martha. The question we wish to answer is: who is
the grandson of Jonathan? We will now use the symbol “-” of the PROLOG
language (Edinburgh dialect) instead of the left arrow, “«”.

grandson(X,Y) :- son(X,Z), parent(Y,Z).
son(walter, martha).
parent (jonathan, martha).

?- grandson(W, jonathan).

The system attempts to satisfy the goal(s) preceded by “?-". The way it proceeds
is similar to a sequence of resolution steps. In the course, it eventually performs
a unification that substitutes walter for W, thus solving the problem.

Starting with the question ?- grandson(W, jonathan), the system attempts to
justify each right-hand-side literal (and there is only one in this question). It does
this by finding a matching left-hand-side literal in another clause. In this exam-
ple, it finds the first clause, performing the unification of {W/X, jonathan/Y}.
Now the system must justify the literals: son(W,Z), parent(jonathan, Z).
The first of these is attempted using the second clause and the substitution
{walter/W, martha/Z}. The second literal of the first clause, to which the same
substitution must be applied, is now: parent(jonathan, martha). Fortunately.
this literal matches the third clause exactly, and the justification of Clause 1 and
in turn, the goal, is complete.

A program in PROLOG consists of a list of clauses. The program is exe-
cuted as the PROLOG intepreter applies a form of resolution known as Lush
resolution®, using a depth-first search strategy implemented with backtracking.

3 Lush is an acronym for “Linear resolution with wnrestricted selection function for Horn
clauses.”
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4 This is only one of many possible algorithms to search for proofs. Although
 yinear-format resolution (discussed on page 214) is complete, Lush resolution
js not complete. The built-in logical reasoning engine in PROLOG is weak in
this sense. However, the PROLOG language provides a good base on which to
_jmplement more powerful reasoning systems.

In order to be practically useful, PROLOG contains some theoretically im-
 pure language constructs. Special directives to the interpreter may occur within
clauses or on separate lines. One of these features is the “cut,” described later.
- Others directives handle input and output.

Typically, PROLOG is implemented so that upper and lower-case ASCII
" characters are used, with the convention that words starting with capital letters
!denote variables, and words starting with lower-case letters denote constants
- and “functors.” Functor is the PROLOG name for a predicate symbol. (This
" usage is consistent with the Edinburgh PROLOG dialect [Pereira et al 1978].)
* In general, each clause has a head and a body. The head is the part to the left of
the “-” and the body is the right-hand part. The head or the body may be null.
The programmer has reasonable leeway in formatting the clauses; the head and
ubgoals of a clause may be on the same or on separate lines, and several short
_clauses can be placed together on one line.

8.7.4 Another PROLOG Example

A more interesting example program is the one below, which combines facts,
rules, and information about a current situation to choose an appropriate wine
to go with a meal. The first eight statements of the program declare facts, e.g.,
“Beaujolais is a red wine.” The next two statements give general rules which
ncode the “knowledge” that a red wine goes well with a main course of meat,
whereas a white wine goes well with a main course of fish. The symbols Wine
and FEntree are variables. The declaration “maincourse(salmon)” provides the
nformation particular to the one situation for which the advice is sought. The
ast line of the program is the query. A value of Wine is sought that will satisfy
. the conditions for being a good wine for the meal.

- redwine(beaujolais).
redwine (burgundy) .

redvine (merlot).

vhitewine(chardonnay) .
" vhitewine(riesling).

‘ meat (steak) .
} meat (lamb).

fish(salmon).
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goodwine(Wine) :- maincourse(Entree),meat(Entree),redwine(Wine) .
goodwine(Wine) :- maincourse(Entree),fish(Entree) y2whitewine(Wine)

maincourse(salmon) .

?-goodwine(X).

6.7.5 A Mock PROLOG Interpreter in LISP

In order to elucidate the process of answering a query using goal-driven resoly-
tion with Horn clauses, we present a LISP program which carries out the main
function of a PROLOG interpreter. This program shows that the heart of a
PROLOG interpreter is relatively simple; yet it indicates that there are some
technical challenges in making such an interpreter efficient.

This interpreter is capable of executing the two example logic programs (after
some syntactic changes) given above. The intepreter works by attempting to
satisfy the literals on the list of current subgoals, in left-to-right order. If it
succeeds in unifying the head of a rule with the first subgoal on its list, the
literals in the tail of the rule are put on the front of the list of subgoals and
the interpreter attempts to satisfy the new list recursively. Whenever the list is
reduced to NIL, the current bindings of variables are printed out as a solution,
since all the original subgoals have been satisfied.

This program makes use of the following functions defined in UNIFY.LSP
and whose definitions are not repeated here: UNIFY1, DO_SUBST, SUBST and
OCCURS_IN. The function UNIFY?2 used here is a modification of the function
UNIFY in UNIFY.LSP, and the version of ADD_PAIR given here omits the “oc-
curs check” of the version in UNIFY.LSP. Although this version of ADD_PAIR
does not use OCCURS_IN, the function PRINT_PAIR. does use it.

; PROLOG.LSP - a mock PROLOG interpreter.
; This program demonstrates goal-driven logical inference
; using Horn clauses.

The top-level function is QUERY. When this function is called, the input goal
clause is bound to the atom GOAL, and QUERY invokes SOLVE with initial
binding list NIL and recursion level 0:

(DEFUN QUERY (GOAL)
(SOLVE GOAL NIL 0) )

SOLVE uses all the rules in the database to attempt to solve the current subgoals.
L is list of current subgoals. B is a list of all the current bindings. LEVEL is an
integer indicating recursion depth.
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B (DEFUN SOLVE (L B LEVEL)
= (PROG (NEWB)
(COND ({NULL L)(PRINT_B B))
(T (SOLVE1 DB)) ) ) )

Solve simply calls SOLVE] with the entire database (DB) as the list of rules
to be tried. R is a list of remaining clauses from the database to be tried in
E order to satisfy the current subgoals. SOLVEL first checks to see if there are any

rules left to be tried. If not, it returns NIL. Otherwise it attempts to apply the
pext rule (the first element of R). If the head of this rule can be unified with
he current subgoal (after all the current bindings have been applied), then a
ecursive call to SOLVE is made with a new list of subgoals in which the one
" just matched has been replaced by all those in the tail of the rule. (If there is no
ail, then the new list of subgoals is shorter than before.) This call to SOLVE
includes the new bindings (NEWB), and the recursion level is one more than
efore. Whether or not the unification in SOLVEL1 is successful, a recursive call
made to SOLVE1 with (CDR R) so that all the rules (or facts) get tried, and
1 solutions are found.

DEFUN SOLVE1 (R)
{COND
((NULL R) NIL) ; no rules left, return.
; else try next rule:
(T (COND ((NEQ (SETQ NEWB
(UNIFY2 (CAAR R) ; trial head
(CAR L) ; current subgoal
B) ) ; current bindings
’NOT_UNIFIABLE)
(SOLVE (APPEND (COPY (CDAR R) (ADD1 LEVEL))
(CDR L) )
NEWB
(ADD1 LEVEL) ) ))
(SOLVEL1 (CDR R)) ) ) )

The functions PRINT_B and PRINT_PAIR are used to report solutions:

5 Print out the bindings in B:
P (DEFUN PRINT_B (B)
i (PROG NIL (MAPCAR (FUNCTION PRINT_PAIR) B) (TERPRI)) )

> Helping function for PRINT_B prints out a term-variable pair
; in the form "X=MARY; ", provided the variable occurs in the
t ; original query GOAL.
E (DEFUN PRINT_PAIR (P)
(COND ((OCCURS_IN (CADR P) GOAL)

(PROG NIL (PRIN1 (CADR P)) (TYO 61)
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(PRIN1 (CAR P)) (TYO 59) (TYD 32) ) )
(T NIL) ) )

The function NEQ gives a convenient way to say (NULL (EQ X Y)). It returng
Tif Xisnot EQ to Y.

(DEFUN NEQ (X Y) (NULL (EQ X Y)))

UNIFY2 is a version of UNIFY that postpones the substitutions required by
SOLVEL (done by COPY and DO_SUBST) until after the the test for match.
ing predicate symbols, oftep avoiding some time-consuming, yet fruitless work.
When UNIFY2 returns a unifier, it is appended with the previous bindings.
UNIFY?2 calls UNIFY1, defined in the program UNIFY.LSP.

(DEFUN UNIFY2 (L1 L2 B)
(COND ; make sure predicate symbols match:
((NULL (EQ (CAR L1) (CAR L2))) ’NOT_UNIFIABLE)
(T (PROG ()
(SETQ U NIL) ; unifier is initially null.
(RETURN
(COND
((NEQ (UNIFY1 (COPY (CDR L1) (ADD1 LEVEL))
(DO_SUBST (CDR L2) B) )
’NOT_UNIFIABLE)
(COMPOSE U B))
(T *NOT_UNIFIABLE) ) ) )) ) )

During unification, a new (term, variable) pair must frequently be “added” to
the existing substitution. The test to see whether the variable occurs in the
term is time-consuming and seldom of use in correct programs. The version of
ADD_PAIR here differs from the one in UNIFY.LSP by omitting this test.

(DEFUN ADD_PAIR (TERM VAR)
(SETQ U (CONS (LIST TERM VAR)
(SUBST U TERM VAR) )) )

The function COMPOSE combines two substitutions S1 and S2, adding pairs
from S1 to S2 in a manner similar to that of ADD_PAIR.

(DEFUN COMPOSE (S1 S2)
(COND ((NULL S1) S2)
(T (CONS (CAR S1)
(SUBST (COMPOSE (CDR S1) S2)
(CAAR S1)
(CADAR S1) ) )) ) )
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?‘ The function COPY replaces all the variables in its argument L (which is nor-
£ mally bound to part of a rule) by new variables for the current level, thus assuring
- that the same rule may be used in different ways at different levels of recursion.
‘COPY is supported by COPY1, GETVAR, GETNTH, and the PUTPROP state-

: ments that set up the lists of variables.

(DEFUN COPY (L LEVEL) (COPY1 L))

E (pEFUN COPYL (L)
(COND ((NULL L) NIL)
((ATOM L)
(COND ((VARIABLEP L)(GETVAR L LEVEL))
(TL) )
(T (CONS (COPY1 (CAR L)) (COPY1 (CDR L)))) ) )

. Get the version of variable V for the given LEVEL of recursion:
(DEFUN GETVAR (V LEVEL)
(GETNTH LEVEL (GET V ’NEWVARS)) )

; Return the Nth element of list L:
(DEFUN GETNTH (N L)
(COND ((NULL L) (PRINT ’(N TOO LARGE FOR LIST)))
((EQUAL N 1) (CAR L))
(T (GETNTH (SUB1 N) (CDR L))) ) )

In this implementation, the extra variables that may be needed are provided in
. advance. There is one group for each “original” variable (e.g., “X” has the group
X1, X2, ..., X5). Each group is stored on the property list for its correspond-
ing original variable. The variables given here support the two examples given
further below.

(PUTPROP ’X ’(X1 X2 X3 X4 X5) ’NEWVARS)

(PUTPROP ’Y ’(Y1 Y2 Y3 Y4 Y5) ’NEWVARS)

(PUTPROP ’Z ’(Z1 22 Z3 Z4 Z5) ’NEWVARS)

(PUTPROP °W ’(W1 W2 W3 W4 W5) ’NEWVARS)

(PUTPROP ’WINE ’ (WINE1 WINE2 WINE3 WINE4) ’NEWVARS)

(PUTPROP ’ENTREE °’ (ENTREE1 ENTREE2 ENTREE3 ENTREE4) ’NEWVARS)

Function VARIABLEP supports both UNIFY1 and COPY1. This version (un-
like that given in UNIFY.LSP) supports the two examples given below.

(DEFUN VARIABLEP (X)
(MEMBER X ’(
X X1 X2 X3 X4 X5
Y Y1 Y2 Y3 Y4 Y5
7 71 72 23 724 Z5
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W W1l W2 W3 W4 W5

WINE WINE1 WINE2 WINE3 WINE4

ENTREE ENTREE1 ENTREE2 ENTREE3 ENTREE4
)

Let us now give two examples. The database of clauses for Example 1 is set up,

by:

(SETQ DB1 ’(
((GRANDSON X Y) (SON X Z) (PARENT Y 2))
((SON WALTER MARTHA))
((PARENT JONATHAN MARTHA))

))

Here is the database of clauses for Example 2:

(SETQ DB2 *(

((REDWINE BEAUJOLAIS))
((REDWINE BURGUNDY))
((REDWINE MERLQT))

((WHITEWINE CHARDONNAY))
((WHITEWINE RIESLING))

((MEAT STEAK))
((MEAT LAMB))

((FISH SALMON))

((GOODWINE WINE) (MAINCOURSE ENTREE) (MEAT ENTREE) (REDWINE WINE))
((GOODWINE WINE) (MAINCOURSE ENTREE) (FISH ENTREE) (WHITEWINE WINE))

((MAINCOURSE SALMON))
))

When the following LISP expressions are evaluated, we get a demonstration of
sample inferences, and the sequences in which subgoals are attempted become
apparent.

(TRACE SOLVE UNIFY2)
(SETQ DB DB1) ; use the database for Example 1.
; Who is the grandson of Jonathan?

(QUERY ’ ((GRANDSON W JONATHAN)))

(SETQ DB DB2) ; now use the database for Example 2.
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] ; What is a good wine for dinner tonight?
. (QUERY ’ ((GOODWINE WINE)))

3 The answer to the first example is printed as:
L W=WALTER;

I Although there are other bindings in the environment at the time when the
\  solution is found (Z1=MARTHA; Y1=JONATHAN), only the variable W occurs
in the query, and thus only its binding is printed.

The two answers to the second example are printed as:

WINE=CHARDONNAY;
WINE=RIESLING;

Note that a query may involve several literals. For example, the question
. «what are the combinations of red wine and meat?” is handled by the query:

(QUERY ’ ((REDWINE WINE) (MEAT ENTREE)))
; and results in the six solutions:

.- ENTREE=STEAK; WINE=BEAUJOLAIS;
" ENTREE=LAMB; WINE=BEAUJOLAIS;
ENTREE=STEAK; WINE=BURGUNDY;
ENTREE=LAMB; WINE=BURGUNDY;,

- ENTREE=STEAK; WINE=MERLOT;

.- ENTREE=LAMB; WINE=MERLOT;

' 6.7.6  PROLOG’s List-Handling Facilities

Like LISP, PROLOG has essentially a single data type to represent both data and
- programs, and this data type is much like the S-expression of LISP. (The syntax
of PROLOG programs hides this structure, however.) Although the Marseille
dialect of PROLOG represents what in LISP would be (X.Y) as cons(X,Y), the
Edinburgh dialect (which is more common) uses [X|Y]. The null list is denoted
[]. The list containing A, B, and C is written [A, B, C]. Variables appearing in
list expressions can be unified just as they can outside of lists. For example, the
predicate member(X, L) which is true if X is an element of L can be defined as

member (X, [XIY]).
member (X, [Y|Z]) :- member(X, Z).

Here, the query

?-member (b, [a, b, cl).
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fails to unify with the single literal of the first clause of the definition. since }
and a are different constants. However, the head of the second rule unifies with
the query with {b/X,a/Y,[b,c|/Z}. The subgoal, member (b, [b,c]), is solveq
recursively; this one does unify with the first rule and is satisfied. The query ig
found to be true.

A more interesting example is the definition of append (L1,L2,L3) which ig
true if the bindings of L1 and L2, appended together, match the binding of 3.

append([], L, L).
append ([X|L1], L2, [X|L3]) :- append(L1, L2, L3).

The first rule says that append is true if the first list is empty and the other twg
are the same. The second rule says that append is true if the heads of the first
and third lists are the same and append happens to be true on the tail of the
first list, the same second list, and the tail of the third list. The query,

?-append([a, b], [c], L).

results in L = [a, b, c].
Unlike other programming languages, PROLOG makes it easy to compute
functions “backwards.” For example the query

?-append(L, [c], [a, b, cl).

results in L = [a, b}, and we can get all four pairs of lists that can be appended
to give [a, b, ] with the query

?-append(L1, L2, [a, b, c]).
The results are the following:

Li=[1; L2=[a, b, c];
Li=[a]; L2=[b, c];
Li=[a, bl; L2=[c];
Li=[a, b, cl; L2=(1;

6.7.7 Cut and Other PROLOG Features
When PROLOG attempts to satisfy a goal P in a statement of form

P :-Q1, Q2, ..., Qn.

1t attempts to satisfy subgoals Q1 through Qn with a common substitution.
proceeding from left-to-right and backtracking (right-to-left) if necessary. If the
special subgoal “!” occurs in the body of the clause, however, backtracking is
restricted. For example, with the statement form

P :-Q1, ', Q2.
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b after Q1 is satisfied, the interpreter encounters the cut symbol, and, since this
b is the first time the cut is encountered for the interpretation of this clause, the
b cut subgoal is immediately satisfied with the current substitution, and then the
| interpreter attempts to satisfy Q2. If Q2 fails, the interpretation backs up. As
L it backs up past the cut, the attempt to satisfy the current goal is interrupted
i and treated as a failure.

] Another special predicate is fail, which takes no arguments. Any attempt to
‘ satisfy fail fails and the interpreter tries to backtrack. A simple way to implement
b fail is to forbid its use on the left-hand side of any rule, so that a fail subgoal
can never be satisfied.

' Although it is easy with Horn clauses to state a positive fact (i.e., that some
| predicate is true on some arguments), one has a problem in stating a negative fact
E (i.e., that a predicate is false on some arguments). One way to obtain negation
E is to define it in terms of cut and fail:

E not(X) :- X, !, fail.
not (X).

If X is true, then not(X) fails because the subgoals X and cut are both satisfied,
but fail causes backtracking into the cut, which causes the goal to fail. On the
b other hand, if X fails, then the second rule is tried and found to succeed, since
f it is a unit clause. Note that here, X plays the role of subgoal and argument to
L predicate not at the same time. By using this definition of not, one is making a
£ kind of closed-world assumption called negation as failure.

] PROLOG provides special predicates assert and retract that are used to add
L clauses to or delete them from the database. (Backtracking does not undo their
L effects, however.)

In order to do arithmetic, PROLOG provides an assignment operator us that
- takes two operands: a variable on the left and an arithmetic expression on the
E right (and thus it is an infix functor). The following definition of factorial uses
5 it

factorial(0, 1).
factorial (N, F) :- M is N-1, factorial(M, G), F is N * G.

Here factorial(5.X) would be satisfied by binding N to 5, M to 4, G to 4
factorial (computed recursively), and F' to the result of multiplying N by G,
which is 120. Note that is fails if there is an unbound variable in its right-hand
argument. Another limitation of is is that arithmetic with is does not permit
backtracking, and the query

?-factorial (X, 120).

will fail to produce a solution.
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6.7.8 LISP versus PROLOG

Both LISP and PROLOG are popular languages for artificial intelligence gyy.
tems implementation. The unification and backtracking mechanisms built iﬁto
PROLOG make development of problem-solving systems that use them easy,
However, not all Al systems are based upon problem solving through predi(:age
logic. For many systems, PROLOG does not seem as appropriate as LISP. Many
consider LISP to be a more flexible language, albeit a somewhat lower-level one
than PROLOG. In the late 1970’s and early 1980's, LISP was more prevalent
in the United States while Europe and Japan were more oriented towards PRO-
LOG. However, the user communities have become more evenly distributed in
recent years.

6.8 Non-Monotonic Reasoning

6.8.1 Motivation

The predicate calculus is an example of a “monotonic” logic. Suppose that S is
the (possibly infinite) set of formulas provable from some set A of axioms. If A’ is
a larger set of axioms that includes A, then S, the set of formulas provable from
A’, is either a superset of S or is equivalent to S. That is, the set of theorems
1s monotonically nondecreasing as one adds to the set of axioms. None of the
formulas in S have to be retracted as A is enlarged.

In everyday life, people seem to reason in ways that do not adhere to a
monotonic structure. For example, consider the following:

Helen was attending a party at her friend Jack’s apartment. Jack
ran out of wine and asked Helen to drive his car to the bottle shop
to buy some Cabernet. He handed Helen the keys. She accepted
the job and concluded that she would buy the wine. After she tried
to start the car, however, it became apparent that the battery was
dead. She revised her previous conclusion that she would buy the
wine.

Here Helen has performed non-monotonic reasoning. As new information came in
(that the car wouldn’t start) she withdrew a previous conclusion (that she would
buy the wine). Adding an “axiom” required the revocation of a “theorem.”
There is good reason for people to employ such non-monotonic reasoning
processes. We often need to jump to conclusions in order to make plans, to
survive; and yet we cannot anticipate all of the possible things that could go
wrong with our plans or predictions. We must make assumptions about things
we don’t specifically know.

Default attributes are a powerful kind of knowledge, since they permit useful
conclusions to be made, even if those conclusions must sometimes be revoked.
Here we examine means for Al systems to make defaults of a particular kind.
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6.8.2 Circumscription

E A formal method for non-monotonic reasoning using the predicate calculus has
E been proposed [McCarthy 1980] which has some elegant features. The method,
E called circumscription, is a mechanism for adding to a set of predicate-calculus
¥ formulas one or more new formulas which express a kind of default or closed-
k. world assumption.

3 Let A be a formula containing an n-ary predicate symbol P. If ¥ represents
L, formula with n designated free variables, then we use A[¥/P] to denote the
¥ result of substituting ¥ for each occurrence of P in A, such that the kth free
variable in ¥ is replaced by the kth argument of P in the occurrence. If the
B occurrence of P has the form P(z1,...,z,), which can be abbreviated to P(Z),
then the occurrence of ¥ that replaces it can be denoted ¥(Z).

1 Then the circumscription of P in A is the following “schema” for generating
L formulas:

' {A[¥/P)AVZ{E(Z) — P(Z)|} — VZ[P(Z) — ¥(T)].

- This schema represents the assertion that the only objects Z that satisfy P
§ are those which must satisfy P, to avoid inconsistency, assuming A is true.

f:k\ Let us illustrate how circumscription can be used to represent Helen’s as-
. sumptions before she got into Jack’s car. In order to drive a car there are a
number of requirements, two of which are the following:

K: having the keys to the car, and
C: having physical access to the car.

f That these conditions are prerequisites for driving a car is expressed by the
£ formula

A: prerequisite(K') A prerequisite(C).

Helen assumed that if all the prerequisites were satisfied (that is, there were “no
problems” with them), she could and would drive the car and buy the wine. This
belief is expressed by the following:

a: Vz[prerequisite(z) — noproblem(z)] — buy(Helen, wine).
; When Helen arrived at the car, she had these prerequisites; thus we have:
noproblem(K') A noproblem(C).
The circumscription of prerequisite in A is the schema:
{[¥(K) A®(C)] AVz[¥(z) — prerequisite(z)]} — Vz|prerequisite(x) — ¥(z)].

From this circumscription, it is a straightforward matter to “jump” to Helen's
first conclusion. We begin by taking for ¥ the expression (x = K)V (z = C).
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The antecedent of the circumscription is clearly true, so we may conclude the
right-hand side:

Vz[prerequisite(z) — ((z = K) V (z = ()]

which asserts that the keys and access to the car are the only prerequisites. Thyis
formula may be added to the set of theorems, and it can be used to deduce new
theorems.

Now since K and C are the only prerequisites, and Helen has both of them,
the antecedent of () is true, and the consequent, buy(Helen, wine), follows.
Without the circumscription, there would be no basis for proving the antecedent
of (a).

The non-monotonic retraction of Helen’s initial conclusion was necessary after
two additional facts became apparent:

prerequisite(B):  the battery must be functional, and
—noproblem(B): the battery is not functional.

A natural way to handle the retraction is to remove from the set of theorems the
right-hand side of the circumscription of prerequisite in A as soon as the new
fact involving prereguisite is encountered, also removing all formulas derived from
the circumscription. Then the new fact may be conjoined with A to produce a
formula

A': noproblem(K) A noproblem(C) A noproblem(B).

A new circumscription of prerequisite in A’ may be constructed in the hope
of deriving new useful conclusions, but it is no longer possible to prove the
formula, buy(Helen, wine), since —noproblem(B) prevents the antecedent of («)
from being true.

A possible advantage of circumscription over some other methods for non-
monotonic reasoning is that it is an augmentation of the first-order predicate
calculus, which allows all the reasoning, except circumscription itself and the
instantiation of the resulting schemata, to be handled by the methods already
available (e.g., resolution). However, the practical application of circumscription
appears awkward in comparison to the adoption of explicit defaults or the use
of the negation-as-failure assumption in logic programming.

6.9 Bibliographical Information

A clear introduction to the propositional calculus with proofs of its consistency
and completeness may be found in Part 2 of [Hunter 1971]. Wang’s algorithm
for proving theorems in the propositional calculus first appeared in [Wang 1960).
A thorough introduction to mathematical logic may be obtained using the text
[Mendelson 1964]. An excellent text covering the basics of automatic theorem
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proving is [Chang and Lee 1973]. A newer text with an emphasis on applying
theorem proving to mathematical problems is [Bundy 1983]. An introduction to
Jogical reasoning by computer that is easy to read is [Wos et al 1984].

The mathematics underlying most modern approaches to automatic theo-
rem proving in the predicate calculus was done in the early part of this century
[Herbrand 1930]. The first program to prove theorems of the predicate calculus
by applying Herbrand’s theorem was that of [Gilmore 1960] which exhaustively
generated sets of variable-free instances of a set of clauses, looking for an incon-
sistency. The more efficient resolution approach was first described by [Robinson
1965). The “Logic Theory Machine” program [Newell et al 1957] used a subgoal
approach to proving theorems in the propositional calculus taken from [White-
head and Russell 1935]. The use of a “diagram” to control the search for a proof
in geometry is illustrated in [Gelernter 1963]. A detailed account of a theorem-
proving program widely considered to be successful is given in [Boyer and Moore
1979).

The notion of using a theorem prover as a program interpreter was incor-
porated in the PLANNER programming language [Hewitt 1971] embedded in
LISP. Incorporating a predicate logic style into a programming language was
first achieved in an accepted way in PROLOG [Warren et al 1977]. For a text on
PROLOG, see [Clocksin and Mellish 1981], and for logic programming in general
see [Kowalski 1977]. A concise introduction to PROLOG is the pair of articles
[Colmerauer 1985] and [Cohen 1985], the latter also containing a bibliography
of some 47 items related to the language. A collection of articles about logic
programming and its uses is contained in [van Caneghem and Warren 1986].

Non-monotonic reasoning was the subject of a special issue of Artificial Intel-
ligence, which contained the original article on circumscription [McCarthy 1980],
as well as several other important papers, including [McDermott and Doyle 1980],
[Reiter 1980] and [Winograd 1980]. A pragmatic approach to non-monotonic rea-
soning was developed by Doyle and called “truth maintenance systems” [Doyle
1979).
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Exercises

Classify each of the following as either a contradiction, a tautology, or a
satisfiable non-tautology. Justify each answer.

{a) P— =P

(b) (PV Q) (~PVv-Q)

(c) (P=Q)AN(Q—~P)

(d) P (ﬂP p)

Use Wang’s rules to prove (P — Q) A (Q — R)) — (P — R).

Find a proof for the following logical expression using Wang’s rules. Com-
pare your proof with the display you get when you set (TRACE VALID1)
and then give the expression to PROVER to validate.
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(((A IMPLIES B) AND (B IMPLIES C)) IMPLIES (A IMPLIES C)).

Explain why the PROG is used in the definition of the function VALID].

Devise a valid logical expression of three variables A, B and C. which
has only four occurrences of logical operators, which causes the maximurm
number of calls to VALID1 under these restrictions.

. Enhance the FORMAT function so that it also can accept well-formed

formulas of the form (A XOR B), meaning the exclusive-or of A and B,
and translate them into equivalent formulas using only AND, OR, and
NOT.

Is the implementation of the proposition verifier really a production Sys-
tem? Explain.

Using only the axioms of Principia Mathematica, prove that P — —{=P).

Prove the resolution principle of the propositional calculus {for three
propositional symbols P, @, and R) by perfect induction.

Consider the following statements:

o “If the maid stole the jewelry, then the butler wasn't guilty.”
¢ “Either the maid stole the jewelry or she milked the cows.”
e “If the maid milked the cows, then the butler got his cream.”

e “Therefore, if the butler was guilty, then he got his cream.”

(a) Express these statements in the propositional calculus.
(b) Express the negation of the conclusion in clause form.

(c) Demonstrate that the conclusion is valid, using resolution in the
propositional calculus.

Write a LISP program that takes a list of clauses of the propositional
calculus and attempts to derive the null clause, using resolution.

Put the following predicate-calculus formulas into clause form:
(a) (Vo)(vy){[P(z) A Q(y)] — 32R(z,y,2)}
(b) (Bz)(vy)(32){P(z) — [Q(y) — R(2)]}

For each of the following sets of literals, find a most general unifier or
determine that the set is not unifiable.

(a) {P(z,a), P(b,y)}
(b) {Q(a),Q(f(2))}

Y
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() {P(z), P(f(y)). P(f(g(z))}
(d) {P(2).QW)}
(e) {P(z, f(z),a), P(b,y,2)}

14. Prove the conclusion (Vz)L(z) from the premises (Vz)(S(z) — L(z)) and
—(3z)(~S(z)), using predicate calculus resolution.

15. Consider propositions P1 through P4 below. Encode each proposition as
a logical formula in the predicate calculus, choosing appropriate predi-
cates. Then show that P4 is logically implied by P1, P2 and P3 using the
resolution method.

e P1: If something has hair and gives milk, then it is a mammal.
e P2: Any coconut has hair.
e P3: Any coconut gives milk.

e P4: All coconuts are mammals.

16. (a) Determine the number of times UNIFY1 is called in the evaluation
of the form:

(UNIFY (P X Z Z 8)
(PYYWW )

(b) Determine the number of times UNIFY1 is called in the evaluation
of the form:

(UNIFY (P X Y Z (F (F (F (G X Y 2)))))
(P (FA) (FA (FA W)

(c) Determine the computational complexity of the variation of the uni-
fication algorithm that is implemented in UNIFY and its supporting
functions.

17. Write a function (FACTORS C) that uses UNIFY to find factors of a
clause C, where C is given as a list of literals. FACTORS attempts to unify
pairs of literals from C, and whenever successful, prints the corresponding
factor; any factors of the factor are then computed recursively. Show your
results for the clause P(z) V P(f(y)) V P(f(a)) V Q(z) vV —P(y).

18. Modify the UNIFY program to accept a list of two or more literals rather
than only two literals.

19. Make the UNIFY program more efficient by avoiding the redundant at-
tempts to perform substitutions that can take place before the recursive
calls to UNIFY1. No term-variable substitution should be applied more
than once to the same subexpression.



236 CHAPTER 6. LOGICAL REASONING |

20. (a) Using the UNIFY program, write additional functions to produce 4
resolvent given two parent clauses. Test your program with the form

(RESOLVE *((P A X) (NOT (Q X V)))
*((Q (F Z2) B (PZB)))

(b) Improve your RESOLVE program to find a resolvent for each eligible
complementary pair of literals from the parent clauses.

21. Explain the necessity of renaming variables with the COPY function iy
the program PROLOG.LSP. What would be the result for the following
logic program if COPY were only an identity function?

; Database:

((GRANDPARENT X Y) (PARENT X Z) (PARENT Z Y))
((PARENT X Y) (FATHER X Y))

((FATHER SAM JOE))

((FATHER JOE DAVID))

; Query:

(QUERY ’ ((GRANDPARENT SAM Y)))

22. Using each of the example logic programs presented for PROLOG.LSP,
determine the number of successful unifications (performed by UNIFY?2).
Next, with tracing disabled, measure the time required by your computer
to execute each of these two examples. For each, divide the time by the
number of unifications to get a measure of the LIPS (Logical Inferences
Per Second). Describe your results and discuss the factors that may or
may not make this a fair measure of a system’s execution speed.

23. The function UNIFY1 used in both UNIFY.LSP and PROLOG.LSP can
run faster or slower depending upon whether the “occurs check” is made
by the function ADD_PAIR.

(a) Measure the speed difference this makes in the execution of the good-
wine example for PROLOG.LSP on page 224. Give your answer in
LIPS (Logical Inferences Per Second).

(b) What is the danger in removing the occurrence check?
24. Add the following features to PROLOG.LSP:

(a) handling the special cut subgoal.
(b) handling of subgoals of the form (NOT X). where X is a subgoal.

(c) handling of arithmetic assignments of the form (IS X (PLUS Y 5)) as
done by the PROLOG is operator. Demonstrate this feature using
the factorial function on page 227 to compute 5!
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25. Using the function PROLOG.LSP, implement the Horn-clause definitions
of:
(a) member given on page 225, and demonstrate it with the query

(QUERY ’ ((MEMBER JOHN
(CONS MARY (CONS X (CONS BOB NIL))) )))

g which should result in “X=JOHN;".

(b) append given on page 226. By tracing the SOLVE function, deter-
mine the sequence of subgoals attempted for the query,

(QUERY ’ ((APPEND (CONS A (CONS B NIL))
(CONS C NIL)
N

where A, B, C and NIL are constants and X is a variable.

26. (a) Develop a list of ten to fifteen Horn clauses that represents a set of
constraints or preferences for restaurants or entertainment during a
night on the town with a friend.

(b) Demonstrate the solution to a problem using your rules (with PRO-
LOG.LSP or a PROLOG interpreter).

27. (a) What is the circumscription of P in the formula below?
P(a,b) A P(a,c)
(b) Demonstrate the steps required to use the circumscription to con-
clude that (a,b) and (a,c) are the only argument pairs that satisfy
P.

28. Determine the circumscription of buy in (a) on page 229.







Chapter 7

L Probabilistic Reasoning

7.1 Introduction

7.1.1 The Need to Represent Uncertain Information

. In many practical problem-solving situations, the available knowledge is incom-
plete or inexact. Weather prediction and medical diagnosis are two kinds of
' such situations. In cases like these, the knowledge is inadequate to support
“the desired sorts of logical inferences. However, humans have ways of draw-
- ing inferences from incomplete, inexact or uncertain knowledge and information.
Although our knowledge is not complete, we can and do make and use general-
izations and approximations that help us summarize our experience and predict
aspects of things we don’t yet know. Generalizations are often subject to error,
and yet we use them anyway.

The knowledge in a machine is always limited, too. Because intelligent ma-
chines should do the best they can when their knowledge is not complete and
- exact, we want them to use generalizations and approximations, too.
Probabilistic reasoning methods allow Al systems to use uncertain or prob-
- abilistic knowledge in ways that take the uncertainty into account. In addition,
" probabilistic methods can help us accumulate evidence for hypotheses in a fair
way; they are appropriate tools in making “just” decisions. Decision theory,
- related to theory of probability, provides additional techniques that help to min-
imize risk in making decisions.

j 7.1.2 The Nature of Probabilistic Information

We often must deal with statements whose actual truth we don’t know and
don’t have the resources to learn in a short period of time. Let us consider the
© statement “it will rain tomorrow in Walla Walla.” Suppose that a resident of
i Walla Walla is planning a picnic and would indeed like to know whether or not it
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will rain. Suppose further that he has a feeling that it will rain, but is not Sure,
How might this feeling be related to the truth of the statement? How should (or
does) this feeling affect his decision to have the picnic? What are the conscioug
or unconscious factors in his mind that give rise to his intuition? How can g
computer program take such factors into account?

Asking such questions may seem to be stretching the importance of predict.
ing the weather or of common intuition. However, we can ask the same questiong
about a doctor’s intuition in diagnosing a patient, or a financial analyst’s feel.
ings about the stock market. In domains such as these, there may well exist
formal criteria that complement intuition or which actually underlie the inty-
ition. Furthermore, we may be able to design computational mechanisms which
are consistent with both the formal criteria and the intuition.

The phenomenon of uncertainty can be studied mathematically drawing on
the theory of probability and on theories of evidence.

7.2 Probability
7.2.1 The Notion of Certainty

To an arbitrary statement, anyone who knows what he believes can lend a judg-
ment: “Sure,” “Impossible,” “Maybe,” “I'll give you ten to one it’s true,” “Un-
likely but possible,” and perhaps even “I don’t know and I don’t care.” If we
require that the person choose a number in some range, say, 0 to 10, to indicate
his degree of belief in the truth of the statement, we could interpret 0 as his
certainty that the statement is false, 5 his belief that it may just as well be true
as false, and 10 his certainty in its truth. The value he chooses represents his
(subjective) belief in the statement. Since such a value is a belief rather than an
actual representation of the truth of a statement, it is possible and permissible
that someone assign a value of 10 to the statement “27 is a prime number.”

On the other hand, regardless of what particular individuals may believe,
certain statements are true, certain others are false, and others have basis for
neither truth nor falseness to be ascribed to them. Regardless of one person’s
opinion, 27 is not a prime number. The statement, “The next time you flip a
fair coin, it will come up tails,” has no basis for being true or for being false.
Consequently, to give a certainty value of 0 or 10 to this statement is to do an
injustice to it. In cases such as this, truth or falseness seeming equally likely, 5
would be a fair certainty value!. There is thus a kind of ideal, “just” certainty
value that some statements deserve.

Probabilities are numerical values between 0 and 1 (inclusive) that repre-
sent ideal certainties of statements, given various assumptions about the cir-

1There are other systems for assigning values to degrees of belief that are arguably more
appropriate than probability or systems equivalent to probability. One of these, commonly
known as “Dempster-Shafer theory,” has received much attention recently, and it is described
at the end of this chapter.
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L cumstances in which the statements are relevant. The concept of probability
l has been studied through the controlled circumstances of mathematically simple
5 situations.

: The mathematical theory of probability has evolved through the last three
E centuries. Notable landmarks are Pascal’s study of binomial coefficients, which
b he did around the year 1650, and Laplace’s formulation of probability as a ratio.
[ Using numbers from Pascal’s triangle, or by computing the binomial coefficient
Ccr directly with the formula C} = k,(n"—lk)., one could easily determine that

} the number of ways to choose three books from a set of five is (5 x 4)/2 = 10.
g Laplace’s formula gives a way to compute a probability:

Probability = (number of desired outcomes) / (total number of outcomes)

For example, to determine the probability of drawing a card belonging to the
diamonds suit out of a normal deck of playing cards, one divides the number
} of diamond cards (13) by the total number of cards (52), getting the value 1/4.
& Laplace’s formula works under the assumption that each outcome is equally

kely.
* What is the probability of drawing, out of a hat containing a shuffied deck of
. playing cards, the ace of spades? In the absence of particular information about
i where in the hat the ace of spades lies (e.g., on top of all the other cards), it
makes sense to treat each of the possible outcomes of the draw equally. That
is, it is only fair that we ascribe to each of the 52 cards a probability of being
drawn equal to 1/52. To do otherwise would be to act as if we had additional
information when, in fact, we do not.

7.2.2 Axioms of Probability

In many situations the possible outcomes can be classified into categories called
“events.” For example, in drawing a card from a shuffled deck, there are 52
possible outcomes. Drawing a diamond is an event containing 13 outcomes.
E Drawing the ace of spades is an event containing one outcome.

It is possible to dispense with the notion of outcome entirely and deal only
¢ with events and their probabilities. For example, if John Doe has an upset
¢ stomach, some possible events are that John has a virus, John has food poisoning,
:' John is seasick, etc. The probabilities for each event could be very unequal in a
b given context. In particular, if the context is a Caribbean cruise during hurricane
i weather, it is quite likely that John is seasick. Furthermore, these events are not
. mutually exclusive; John might suffer from several of the diseases simultaneously.

: Probability values obey two laws: the additive law and the multiplicative
' law. Let A and B be events having probabilities P(A4) and P(B), respectively.

1. Additive Law: P(AUB) = P(A)+ P(B)— P(AN B). If A and B do not
have any outcomes in common, then P(AU B) = P(A) + P(B).
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2. Multiplicative Law: P(AN B) = P(A) x P(B|A) = P(B) x P(A|B).
Here P(B|A) is P(B given A), which refers to the probability of event
B under circumstances where event A is known to occur or be true. Iy
the case where A and B are known to be statistically independent, the
multiplicative law can be expressed more simply: P(AN B) = P(4) x
P(B).

When we can describe a set of events for a situation, it is important that we
see to it that probabilities are assigned to the events in such a way that these
laws are satisfied. This helps to assure that any conclusions drawn from the
probabilities are reasonable.

7.2.3 Bayes’ Rule

It is very common to compute conclusions from premises. With mathematical
logic, the rule of modus ponens allows us to take general knowledge of the form
P — Q and a specific fact P and deduce Q. Often either the general rule or the
specific information is uncertain, but we would still like to determine something
about the consequence: the degree to which it can be believed. In this section,
we treat degrees of belief as if they are probabilities values. Depending on the
phenomena being described, the probability of a conclusion Q could be computed
by any of an infinite number of different functions of the probability of P. A
method that provides a sensible approach in many situations was developed by
the British cleric and mathematician, Thomas Bayes.

Bayes’ rule is well presented using a fictional medical-diagnosis problem. We
wish to know the probability that John has malaria, given that he has a slightly
unusual symptom: a high fever.

We assume that two kinds of information are available from which to compute
this probability. First there is general knowledge: (a) the probability that a
person (in this case John) has malaria, regardless of any symptoms, (b) the
probability that a person has the symptom of fever, given that he has malaria,
and (c) the probability that a person has the symptom of fever, given that he
does not have malaria. Second, there is the information particular to John: that
he has this symptom. Let us assign the symbol H to the hypothesis and the
symbol E to the evidence:

e H = “John has malaria,” and
e E = “John has a high fever.”
Thus we begin with:
e general knowledge or “model” consisting of

1. P(H): probability that a person has malaria,
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2. P(E|H): probability that a person has a high fever, given that he
has malaria, and

3. P(E|-H): probability that a person has a high fever, given that he
does not have malaria; and

o particular: the fact that John has the symptom of high fever.

:  We desire the value of P(H|E) which represents the probability that John has
| malaria, given that he has a high fever.
This is obtained using Bayes’ rule:

p(H|E) = ZEIDPUH) LI?E? ()

here
P(E) = P(E|H)P(H) + P(E|-~H)P(—H).

his is interpreted as saying: the probability that John has malaria given that he
as a high fever is equal to the ratio of the probability that he has both the fever
and malaria, to the probability that someone has a fever regardless of whether
not he has malaria. The probability of having a high fever is computed as the
gum of the conditional probabilities of having the fever given malaria or given not
alaria, weighted by the probability of malaria and not malaria, respectively.

To continue the example, let us suppose that the general knowledge is as
ollows:

P(H) = 0.0001 P(E|H) = 0.75 P(E|-H) = 0.14

hen we have

P(E) = (0.75)(0.0001) + (0.14)(0.9999)
which is approximately 0.14006 and

P(H|E) = (0.75)(0.0001)/0.14006 ~ 0.0005354.

Thus John'’s probability of malaria, given his fever, is about 0.0005. On the
ther hand, if he did not have the fever, his probability of having malaria would

© P(~E|\H)P(H) _ (1 - 0.75)(0.0001)
P(CE) (1 0.14006)

. or about 0.00003. We can say that knowledge of John's having a high fever
 increases his probability for malaria by a factor of 5 while knowledge of John’s
! not having a high fever reduces the probability by a factor of 3.

L We can generalize the example we have just presented by showing how evi-
dence, prior and conditional probabilities, and Bayes’ rule fit together as the first
| stage of a decision-making system. Figure 7.1 shows a diagram for a decision-
| making system. This system could be adapted (in theory) to any application

P(H|-E) = ~ 0.000029
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Figure 7.1: General form of an ideal decision-making system.

by changing only two boxes: the prior and conditional probabilities box and the
risk-assignment-scheme box.

In Fig. 7.1 the components in rectangular or rounded-rectangular boxes are
fixed parts of the system. In the ovals are the evidence, probabilities conditioned
on the evidence, and decision based on the evidence.

If we always had accurate general knowledge for such inference problems,
we could make simple and clean machines to compute probabilities for various
things considering all the evidence. Unfortunately, we usually do not have accu-
rate knowledge of the conditional probabilities of sets of symptoms (or evidence)
given the state of health (the hidden truth), so that the ideal, all-Bayesian system
of Fig. 7.1 cannot be successfully built. However, heuristic modeling tools can
be used to represent known relationships between evidence and conclusion. The
complex relationship between evidence and final conclusions can be expressed
as a network of simpler relationships involving not only the evidence and fi-
nal conclusions, but also intermediate assertions: partial conclusions and close
consequences of the evidence. Such networks are called “probabilistic inference



| 73. PROBABILISTIC INFERENCE NETWORKS 245

¥ petworks.” Their design and construction are discussed in the following three
| sections of this chapter.

7.3 Probabilistic Inference Networks

7.3.1 Appropriate Domains

Making a decision means choosing among alternative courses of action with or
k. without all the relevant information and often with uncertain information as well.
I The need for intelligent decision-making is omnipresent in intelligent beings.
§ In people, the need arises at the simple level of choosing whether or not to
step around a puddle on a rainy day, or at the complicated level of choosing a
treatment plan for a medical patient. Animals need such abilities in order to
" find food and evade predators. A mathematician may need to choose among a
set of possible directions in which to search for a proof.

We seek to model general decision-making in a computationally practical, yet
mathematically meaningful way. Here “probabilistic inference network” struc-
tures are presented as formal structures for representing decision-making sys-
tems. They are good at handling information processing tasks with the following
characterisitics:

1. pieces of information are available at various levels of certainty and com-
pleteness;

2. there is a need for optimal or nearly optimal decisions;

3. there may be a need to justify the arguments in favor of the leading alter-
native choices; and

4. general rules of inference (either based on scientific theory, or simply
heuristic) are known or can be found for the problem.

Usually there must also be an economic need for the application of these tech-
niques to a problem domain. Accurate models for complex phenomena take a
; significant effort to develop, even with the help of experts.

Some examples of actual or potential areas of practical application of infer-
L ence networks are:

¢ medical diagnosis;

e fault diagnosis in machines and computer software (including automobiles,
airplanes, computers, spacecraft, etc.)

¢ minerals prospecting;

e criminal investigations;
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e military strategy formulation (including war-time decision-making);
¢ marketing strategy and investment:; and

e decision-making in design processes (e.g., software design, suspension
bridge design, VLSI circuit design).

7.3.2  Heuristical Components of Inference Networks

Because of the lack of knowledge of the exact conditional probability distribution
for the various possible states of evidence (symptoms) given the various possi-
ble states of nature (e.g., having or not having malaria), successful inference
networks cannot usually be developed directly from Bayes’ rule. A reasonable
alternative is to develop a hierarchy of “fuzzy” assertions or hypotheses and use
substantiated hypotheses at level k to substantiate hypotheses at level k + 1 (see
Fig. 7.2). Bayes’ rule can be used directly to substantiate (establish probability
values for) level-1 hypotheses from the evidence if the evidence may be regarded
as certain. Then “fuzzy inference rules” are used to obtain probabilities for
other hypotheses, given the evidence. If there is uncertainty associated with the
evidence, then fuzzy inference may be used at the first level as well.

7.3.3 Fuzzy Inference Rules

Fuzzy inference rules are functions for propagating probability values. The gen-
eral form of such a function is:

f:00,1]" —[0,1].

Thus a fuzzy inference rule takes some number n of probabilities as arguments
and returns a single probability. The choice of f for a particular situation is a
modelling decision that requires some understanding of the relationship among
the phenomena described by the hypotheses.

Two sets of fuzzy inference rules analogous to operations in the propositional
calculus have been found useful for building inference networks because they
have behavior that follows intuition and they are easy to work with. These are
shown in the bottom two rows of Fig. 7.3.

The system employing min and max is sometimes called a “possibilistic logic.”
Note that the value for AA B in the possibilistic system is not smaller than both
the values for A and B. If min(a, b) is regarded as the probability of A A B, then
the propositions A and B should be regarded as dependent.

On the other hand, the second system, which assigns the value ab to the
conjunction A A B, gives a lower value to the conjunction than the values of
either of the components. That is, ab < a except when a = 0 or b = 1, and
ab < b except when b = 0 or a = 1. If ab is considered to be the probability of
A A B, then we must regard A and B as (statistically) independent.
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Figure 7.2: Pure Bayesian (a) and heuristic (b) inference systems.
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Al B| -A AAB AV B A—- B Ag& B
F|F T F F T F

F| T T F T T T
T|F F F T F T
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a|b|1-a] min(ab) | max(a,b) | max(1—a,b) | xor(a, b)
a{b|l-a ab a+b—ab| 1-a+ab | Xor(a,bd)

Figure 7.3: Inference rules for propositional calculus and two fuzzy logics. The
possibilistic logic rule for A & B is xor(a.b) =max(min(a, 1 - b),min(1 — a,b)).
The probabilistic logic rule for A% B is Xor(a,b) = a +b—3ab+a%b+ ab? — q2h2.

In the examples involving fuzzy logic which follow, the possibilistic logic rules
are employed.

Let us turn to the application domain of automobile repair for an example of
an inference network with intermediate assertions. Let the possible symptoms
be those described by the following four statements:

¢ 51: There is a clanking sound in the engine.
® S5: The car is low on pickup.
e S3: The engine has trouble starting.

S4: Parts are difficult to obtain for this make of car.

The final state of nature whose probability we wish to infer is the truth of the
statement

e C;: The repair estimate is over $250.

Because of the complexity in inferring C; directly from S, S,, and S, five
intermediate assertions are included which we believe relevant to the problem.
The first three of these, which depend directly upon the evidence, are “first-level”
hypotheses:

e Hy: A connecting rod is thrown in the engine.
e Hy: A wrist pin is loose.
e Hj: The car is out of tune.

The other two are a level removed from the first three, and they are thus at the
second level:

e Hjy: The engine needs replacement or rebuilding.

A
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e Hs: The engine needs a tune-up.

. Each first-level hypothesis is related to one or more of the symptoms. We may
I choose to express such a relationship so that Bayes’ rule may be used to estab-
. lish probabilities for the hypotheses that reflect a particular set of symptoms.
i In order to concisely express the prior and “class-conditional” probabilities for
i these relationships we may use a table such as that shown in Fig. 7.4. The right-
f  most column, labelled P(S), gives values of the prior probability for each of the
i combinations of Sy, S, and S3. We are using the symbol S as a variable that
represents some combination of Sy, 52, and S3.

symptoms P(S|H,) P(S|H,) P(S|H3) P(S)
Sy 18, | S5 | P(Hy) =0.0001 | P(Hy) = 0.0002 | P(Hs) = 0.1

F|F|F 0.001 0.2 0.2 0.4405
FI\F | T 0.003 0.1 0.2 0.25
F|T\|F 0.006 0.1 0.2 0.109
F|T,|T 0.15 0.1 0.396 0.20
T{F\|F 0.04 0.125 0.001 0.0001
T|F T 0.06 0.125 0.001 0.0001
T|\T | F 0.11 0.125 0.001 0.0001
T|T|T 0.63 0.125 0.001 0.0002

Figure 7.4: Table of probabilities for the auto repair problem.

4 Using fuzzy logic rules we may model the dependence of Hy and Hs on Hj,
t  H,, and Hj as follows:

Hy=H;V H;
and
Hs = ~(H, V H) A\ Hs.
which, with the scheme of Fig. 7.3 (second-to-last row), means that
P(H4|S) =max(P(H1|S), P(Hz|S5)]

and

P(Hs|S) =min{1-max[P(H1|S), P(H2|S)], P(Hs|S)}.
Finally, C; depends upon Hy, Hs, and Sy

Ci = HyV (Hs A Sy)

so that
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P(C4|S) =max|[P(H,|S),min(P(Hs|S),v)]
where:

_J 1 if S4is true;
Y=1 0 otherwise.

We may diagram our inference network as in Fig. 7.5. As an example for
this inference network, let us consider the case when all of S1, S9. S5 and S,
arc true. Then P(S[|H,) is 0.63 and P(S) is 0.0002. By Bayes' rule. P(H,|S) =
0.315. Similarly. P(H,|S) = 0.125, and P(H3|S) = 0.5. Combining these using
the fuzzy logic rules above leads to P(H,4|S) = 0.315. P(H;3|S) = 0.5. and
P(C]8) = 0.5.

Figure 7.5: A probabilistic inference net for an automobile problem.

7.3.4 Steps in the Design of Inference Networks

The difficult problem of building an inference network appropriate to a given
problem domain can be broken down into simpler steps. The basic steps are the
following:

1. determination of the relevant inputs (i.e., set of possible evidence or symp-
toms),

2. determination of states of nature or decision alternatives,

3. determination of intermediate assertions that may be useful in the infer-
ence network,

4. formulation of inference links, and
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5. tuning the probabilities and/or the fuzzy inference functions.

Let us address each of these steps in turn. The relevant inputs are usually
properties of the object under study or of its environment. For automobile di-
agnosis, these are likely to be various aspects of the car itself: the condition
of its various components, sounds, emissions, consumptions, and attributes of

the make or type of car—availability of its parts, the propensity of parts from
icular brands or year models to fail. In medical diagnosis, symptoms range

L from obvious fatigue, incapacity or infection to results of lab tests or descriptions

f  of pain or medical history from the patient. One approach to the formation of

£ the set of relevant inputs divides the process into two parts. First, a large set

f  of possible inputs is determined by listing all known attributes of the object or

gituation under study. Second, this set is filtered to keep only those for which

there is a hope of relevance to the problem. Relevance is established when a

¢ particular attribute’s value has been correlated with the state of nature with a

b correlation coefficient beyond a threshold. Relevance may also be established

¥ through association with something else already known to be relevant. For ex-

k. ample, if engine state is known to be relevant to the estimated cost of auto repair,

i then the sound of the engine may be declared relevant through correlation with

the engine state. Relevance determination is nontrivial and would be an impor-

§ tant part of any general system for inferring inference networks automatically or

. through interaction with an expert.

The states of nature, like the set of relevant inputs, are learned from experi-
ence or through training. For example, some of the conditions of an automobile
engine may be found by taking some apart. Finding broken parts, one immedi-
ately is acquainted with one subset of states of nature for car engines: the set
of states for which the engine contains broken parts. Additional experience with
engines leads to further subdivisions of these sets of states. Eventually one has
i a suitably fine partition of the set of states of engines to support the reasoning
: in one’s head or in an inference network.

_ The intermediate assertions may be established in a fashion like the establish-
i ment of the states of nature or the relevant inputs. Attributes (of the object or
?" situation under investigation) which are not directly observable (but probabilis-
tically related to the inputs and states of nature in some reasonably understood
way) form the basis of intermediate assertions. Partial characterizations of the
L state of nature may be useful as intermediate assertions; for example, “the prob-
i lem is in the engine.”

; Formation of inference links may be done on the basis of correlations among

attributes. First a search is made for the simplest logical relationships, and then

i more and more complicated ones are sought. In order of increasing complexity

we have

1. logical concurrence—e.g., an input highly correlated with a partial state
of nature;

2. negative concurrence—strong negative correlation;
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3. logical implication—whenever A occurs, B does too—this may be worth
noting even when B is an input;

4. conjunction—C occurs whenever both A and B occur;
5. disjunction—C' occurs whenever either A or B occur; and
6. exclusive disjunction—either A or B occurs but not both.

Whenever a sought logical relationship is found among a group of nodes (inputs,
assertions or states), a link (possibly 3-way to involve A, B and C as above)
can be added to the network with labels as to its type and/or appropriateness
of fit. When the node(s) for the state of nature has been connected (possibly
via intermediate nodes) to the inputs, the topological portion of an inference
network has been constructed. Updating functions still need to be chosen to
propagate the effects of inputs.

If Bayes’ rule is to be used to make the first-level connections in the network,
then there is no need for fuzzy inference rules at that level. But fuzzy logic
and/or “subjective-Bayesian” updating functions (which are defined later) may
be used at subsequent levels to represent the ways information is to propagate
through those levels. Probability values associated with various parts of the
network need to be tuned to give reasonable performance. Prior probabilities
for states of nature and intermediate assertions must be specified if Bayesian
or subjective-Bayesian updating is to be used. Class-conditional probabilities
are also essential for Bayesian updating, and they must be well-chosen to give
reasonable results. Statistical learning methods might be employed to obtain
and to improve probability estimates. However, in most applications, there will
not be enough trials (test cases) in which to get good values automatically, and
this knowledge must be obtained from an expert or from compiled materials and
directly incorporated to achieve a useful level of performance. For example, a
new auto mechanic learning about Brand @ automobiles may learn from his own
experience that 1971 was a bad year for transmissions; or he may learn this by
word of mouth from a senior mechanic, and gain this bit of expertise in much
less time. A computer system to diagnose car problems could be given a priori
probability of 0.5 that any power train problem in '71 Brand Q cars is in the
transmission, rather than have to process 20 power-train cases to find out.

We will assume that relationships and probabilities needed to construct an
inference network are provided by an expert, either in collaboration with an Al
programmer or with an interactive tool for building expert systems.

7.4 Updating in Inference Networks

In an inference network the general format of an inference rule is the following:
“if E, then H,” where E is the evidence and H is the hypothesis. In some cases,
the evidence may be compound and instead of E we have E\ E,,...,FE,. There
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E; is the ith piece of evidence bearing on the hypothesis. Each inference rule
has a certain strength associated with it, which is the power of the evidence
in that rule to confirm the hypothesis in that rule. Here we discuss means for

pdating probabilities associated with hypotheses on the basis of the certainty
with which we know the evidence to be present. A family of such means often
called “subjective-Bayesian” updating rules has proved to be useful in expert
systems such as PROSPECTOR. We begin by formulating the “odds likelihood”
- yersion of Bayes’ rule.

f 7.4.1 Odds and Bayes’ Rule

q As explained in Subsection 7.2.3, Bayes’ rule is usually formulated as follows:

P(E|H)P(H)

P(H|E) = ——p

This expresses the probability of the hypothesis, given the evidence, as the prod-
uct of the conditional probability for the evidence given the hypothesis, times
the prior probability of the hypothesis all divided by the prior probability of the
vidence. We may also express the probability for the negation of the hypothesis
using Bayes’ rule.
P(E|-H)P(~H)
. P(E)
. Now we obtain the odds likelihood formulation for Bayes’ rule by dividing these
two equations. Shortly, we will rewrite this odds-likelihood formulation by using
the definition for the odds of an event. An event X having probability P(X) has
odds as follows:

P(X)

1- P(X)

~ This relationship can be inverted, allowing the probability to be computed from
3 the odds:

P(-H|E) =

0(X) =

O(X)
P =
] X) =15 o)
E Thus “50/50” odds (i.e., odds = 50/50 = 1) corresponds to a probability of
¢ one-half.
f We may now express the odds-likelihood formulation for Bayes’ rule very
: simply:

O(H|E) = AO(H).

B Here O(H) is the prior odds on H and X is defined to be the likelthood ratio
| P(E|H)/P(E|-H). Thus, we update the odds on H in the light of evidence E
- by multiplying the prior odds on H by the likelihood ratio A.
; Presumably, in the construction of an inference network, an expert provides a
b value of A for each rule. If A is much greater than 1, the rule has a high strength
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indicating that the presence of the evidence E makes it much more probable
that H is true. In such a case, we may speak of E as being “sufficient” for I
Thus, we may refer to A as a sufficiency coefficient for the rule. Also, if A is cloge
to zero (significantly less than 1), then the presence of the evidence reduces the
likelihood of H, and it would be reasonable to say that E is sufficient for — H.
Now, suppose E is false or known to be not present (rather than not known).
Then we may write
O(H|-E) = NO(H)

where )\’ is defined as

P(-E|H) 1- P(E|H)

P(-E|-H) 1~ P(E|-H)

This provides a way to update the odds on H when the information about E is
in the negative. Note that X' cannot be derived from ), and so it must also be
provided by an expert. If 0 < A < 1, (that is, X is between 0 and 1 but much
closer to 0 than to 1), then we may say that E is “necessary” for H since the
absence of the E (i.e., or the truth of ~E) makes H very unlikely. We sometimes
speak of X’ as the necessity coeflicient for the rule.

Let us return to the example on page 242, where we computed the probability
that John has malaria, given that he has a high fever. Since P(H), the prior
probability that John has malaria, is 0.0001, the odds, O(H ), is 0.0001,/0.9999 ~
0.0001. We compute A as P(E|H)/P(E|-H) = 0.75/0.14 ~ 5.3571 and )’ as
(1- P(E|H))/(1 - P(E|=H)) = 0.25/0.86 ~ 0.2907. If we know that John has
a high fever, then we compute O(H|E) = AO(H) ~ 5.3571 - 0.0001 ~ 0.000536.
If we know, to the contrary, that John does not have a high fever, we compute
O(H|-E) = NO(H) = 0.2907 - 0.00001 ~ 0.000029.

In a probabilistic inference network, an arc may be labelled with a pair of
values for A and X’ to indicate how the presence or absence of the evidence is to
influence the odds on the hypothesis (see Fig. 7.6).

@ (=18, A'=0.6) @

Figure 7.6: Arc in an inference network, labelled with the sufficiency and ne-
cessity coefficients.

Although A and X are not functionally dependent on one another, they are
not completely independent either. The following equation expresses )\’ in terms
of A and the conditional probability of E given not H.

V= 1 - AP(E|-H)
1 - P(E|-H)
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1 Now assuming that P(E|-H) is neither 1 or 0, we find if X is greater than 1, then
' A is less than 1 and vice versa. Note that it would not be entirely consistent
. to have ) greater than 1 and X" equal to 1 or vice versa. Thus, if a rule states
| that the presence of some evidence enhances the odds for the hypothesis, then
" it should be the case that the absence of the evidence hurts the hypothesis at
- Jeast to some extent. However, some systems such as MYCIN allow relationships
in which positive evidence strengthens a hypothesis while negative knowledge of
the same evidence has no effect on the hypothesis—in effect, allowing A > 1 with
X=1

The pair A and X' carries the same information as the pair P(E|H) and
P(E|-H). To get the latter from the former we may use the two formulas:

1-N
P(EIH) = A=
1-N
P(EH) = 5—

The formulas O(H|E) = AO(H) and O(H|-E) = XO(H) give us a means
to update the odds on hypothesis H given either knowledge that the evidence is
present or knowledge that it is absent; if the evidence is present, we multiply the
prior odds by A, and if it is absent, we multiply it by ). However, most of the
inference rules in an inference network must work with uncertain or incomplete
evidence so that the rule must be capable of propagating probabilities in a more
versatile fashion than we have just discussed.

7.4.2 Handling Uncertain Evidence

We may extend the foregoing discussion to handle the case of uncertain evidence
by assuming that E above is in fact based on some observations E’. For example,
if we say that we have 80 percent confidence in E, then we can re-express this as
a statement that the probability of E given E’ is 0.8. In order to develop some
useful techniques for propagating probabilities, it helps to make the following
simplifying assumption: Knowledge of E with certainty would allow us to forget
about the observations E’ for purposes of inferring the hypothesis H. Thus we
are assuming that the only influence of E’ on H comes through E. This allows us
to have a fairly simple expression for the probability of H, given the observations
E.

It now appears reasonable to compute P(H|E’) as a linear convex combina-
tion of the two extreme values P(H|E) and P(H|-E). That is, for some value
of t in the range [0, 1], we have:

P(H|E') = tP(H|E) + (1 — t)P(H|-E)

Taking P(E|E') as the value of t, we find that as P(E|E’) increases from 0 to
1, P(H|E') goes from P(H|-E) to P(H|E). The two extreme values can, of
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Figure: 7.7: Inference with uncertain evidence.

course, be computed with Bayes’ rule in a straightforward fashion. In order tq
determine the probability of .H given the observations E’ we interpolate the two
extreme values using the conditional probability for E given E'. A diagram that
illustrates this linear interpolation scheme is shown in Fig. 7.8.

P(H|E) '
P(HIE):
updated ,
probability of H N
P(H|—E)

0 , -
0 1

P(EIE’): current probability of E

Figure 7.8: A linear interpolation function for computing P(H|E') from
P(E|E'").

Considering our example once again, let us assume that John's temperature
is known to have been taken by an unreliable nurse, who, it is also known, takes
correct readings 80 percent of the time. Here we have P(E|E"), the probability
that John has a fever given that the nurse reports a fever, equal to 0.8. With the
linear interpolation above, we compute P(H|E'), the probability that John has
malaria given that the nurse reports a fever, as P(H|E') = 0.8-0.0005354 + 0.2 -
0.000029 ~ 0.0004341. This probability happens to be about 20 percent lower
than that for the case in which the nurse is known to be reliable.

The choice of a linear function, rather than some curve, is an arbitrary one.
It makes the updating computation simple. As we shall see, there is commonly
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P(H|-E)

0

0 PE) P.(E) 1

P(E|E"): current probability of E

Figure 7.9: Inconsistency in prior probabilities for E and H.

a problem with this function, and some others may be better. In any case, it
seems clear that such a function should be either monotonically nondecreasing or
nonincreasing, depending upon whether E is supportive or detracting evidence
for H, respectively.

An interesting dilemma arises from the fact that this equation places a con-
straint on the prior probabilities associated with H and F, and this dilemma is
described in the next subsection.

7.4.3 The Bayesian Dilemma for Inference Networks

In order to apply Bayes’ rule in a meaningful way in an inference network, it is
necessary for the various prior probabilities in the network to be consistent with
one another. In the absence of any observations E', if we use the prior probability
for E to compute an updated probability for H, the “updating” should not give
anything other than the prior probability for H. It would be easy indeed for an
expert, subjectively assigning probabilities to various propositions in an inference
network, to provide prior probabilities that do not meet this constraint. In such
a case, the set of prior probabilities is called inconsistent.

For example, suppose that a physician assigns a prior probability of 0.3 to
E, claiming that three out of ten of the patients he sees have fevers. If we
use this value to obtain P(H|E), the probability of H given the “expected”
probability of E, then using the linear interpolation above, we obtain P(H|E) =
0.3-0.0005354 +0.7-0.000029 ~ 0.000181. This value should be equal to P(H) =
0.0001, but it is about 80 percent larger.
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Although we could design tools that could make it easy for an expert to make
up only consistent sets of prior probabilities, this may interfere with the already-
difficult job of creating a good model of the expertise. Therefore researchers have
explored the possibility of allowing the inconsistency and making the updating
algorithms compensate for it. The inconsistency which can arise is illustrated in
Fig. 7.9.

The prior probability for H should correspond to the prior probability for
E along the line which interpolates the two extreme values. However, the two
may not correspond, and P.(E), the prior probability of E which would be
consistent with the prior probability for H, is somewhere to the right (as in th